		Reg. No. :						
		Question Pa	aper Code: 5710	1				
B.E./B.Tech. DEGREE EXAMINATION, DEC 2020								
Seventh Semester								
Civil Engineering								
	15UCE70)1 -DESIGN OF REINF MASONRY	ORCED CONCRETE STRUCTURES	E AND BRICK				
(Regulation 2015)								
	(IS 456:20	00, IS 1905 - 1987, IS 3	370 : Part-II and Part-	-IV are permitted)				
Dur	ation: 1.15 hrs			Maximum: 30 Mar	ks			
		PART A - (6	$6 \times 1 = 6 \text{ Marks}$					
		(Answer any six of t	the following questio	ons)				
1.	Rankine's theory	of lateral pressure was e	extended to other soil	by _	CO1- R			
	(a) Resal and Bell	(b) Mohr	(c) Terzaghi	(d) All t	he above			
2.	The factor of safe	ty due to sliding of retai	ning wall is generally	taken	CO1- R			
	as							
	(a) 1	(b) 1.5	(c) 2	(d) 4				
3.	Dome in water tar	nk is provided to achieve	e		CO2- R			
	(a) Maximum strength		(b) Maximum storage					
	(c) Minimum storage		(d) Minimum hoop stress					
4.	The minimum gra 456-2000	de of concrete to be use	d in R.C water tank a	s per IS	CO2- R			
	(a) M20	(b) M25	(c) M30	(d) M35				
5.	The decorative ca	p to the top of a newel p	oost is called:		CO3- R			
	(a) Finials	(b) Fillet	(c) Easing	(d) Apro	on			
6.	The drops are pro	vided in flat slabs to res	ist		CO3- R			
	(a) Torsion	(b) Bending moment	(c) Thrust	(d) Shea	ır			

(b) $1/5^{th}$ of the span (c) $1/6^{th}$ of the span

CO4-R

CO4-R

(d)1/7th of the span

In a simply supported slab, alternate bars are curtailed at

Which of the following is/are the method of analysis of yield line

(a) $1/4^{th}$ of the span

	theory					
	(a) Equilibrium method	(b) Virtual work method				
	(c) Both	(d) None of the above				
9.	The minimum thickness of the flat slab is take	ken as		CO5- R		
	(a)L/32 for end panels without drops	(b) L/36 for end panels without drops				
	(c) L/36 for interior panels without drops	(d) All the above				
10.	Usually the thickness of partition wall is			CO5- R		
	(a) 200mm (b) 300mm	(c) 100mm	(d) 50mm			
	PART – B (3	x 8= 24 Marks)				
	(Answer any three of	the following questions)				
11.	Design a reinforced concrete cantilever type retaining wall, having a CO1-App $5m$ full stem. The wall retains the soil with its top. The soil weighs $18000N/m^3$, and has an angle of repose 30^0 . The SBC of soil is $200KN/m^2$. Use M20 grade concrete and Fe 415 Steel.					
12.	Design a underground water tank of internal dimension $6mx3mx3m$. CO2-E The soil surrounding the tank always remains dry. The tank shall be provided with a roof slab. The soil weighs 16000 N/m^2 , having an angle of repose 30^0 . Use M20 grade concrete and Fe 415 Steel.					
13.	Design a interior panel of flat slab with drop the following data. Size of floor = 20m X 20m Size of panel = 5m X 5m Loading class = 4 KN/m ² Grade of concrete = M 20 Grade of steel = Fe 415	os for an office floor to su	it CO3-U	(8)		
14.	Design a rectangular slab 5mx4m in size ar edges to support a service live load of 4KN orthotrophy as 0.7 Use M20 grade concrete a	/m ² . Assume coefficient of		(8)		
15.	Design a interior cross wall with axially loa wall constructed in a two storied building to			(8)		

slabs with 3m ceiling height. It support a 2.65 m wide slab with live

load on roof = 1.5KN/m^2 . Live load on floor = 2KN/m^2 , weight of 80mm thick terrace = 1.96KN/m^2 , weight of floor finish = 0.8KN/m^2 .