Reg. No.:					

Question Paper Code: 47102

B.E./B.Tech. DEGREE EXAMINATION, DEC 2020

Seventh Semester

Civil Engineering

14UCE702 - ADVANCED STRUCTURAL DESIGN

(Regulation 2014)

		` •	,					
Duration: One hour			Maximum: 30 Marks					
		PART A -	$(6 \times 1 = 6 \text{ Marks})$					
		(Answer any six o	of the following questions)					
1.	High strength bol	lts are designed on the	basis of	CO1- F				
	(a) Friction	(b) Tension	(c) Compression	(d) Shear				
2.	The maximum area of tension reinforcement in beams shall not exceed							
	(a) 0.15 %	(b) 1.5 %	(c) 4 %	(d) 1 %				
3.	The bending moment at center span of water tank slab is							
	(a) $pL^2/16$	(b) $pB^2/16$	(c) $pB^2/12$	(d) $pB^2/8$				
4. Cantilever retaining walls can safely be used for a height not more than								
	(a) 3m	(b) 4m	(c) 5m	(d) 6m				
5.	If W is the load on a circular slab of radius R , the maximum circumferential moment at the centre of the slab is							
	(a) $3WR^2/16$	(b) $2WR^2/16$	(c) $3WR^3/16$	(d) $2WR^3/16$				
6.	Bottom bars und slab to a distance		tended into the interior of the	e footing				

(a) 42 diameters from the centre of the column

(d) 24 diameter from the centre of the column

(b) 42 diameters from the inner edge of the column

(c) 42 diameters from the outer edge of the column

7.	The method of do in weight, is known	esign of steel framework vn as	for greatest rigidity and	d economy			
	(a) simply design		(b) semi-rigid design(d) none of the above				
	(c) fully rigid des	ign					
8.	A fillet weld may be termed as						
	(a) mitre weld	(b) concave weld	(c) convex weld	(d) all the above			
9.	The distance between, rivet line and the nearest edge of a joint not exposed to weather, is taken (where t is thickness in mm of the thinner outside plate).						
	(a) 10 t	(b) 8 t	(c) 6 t	(d) 12 t			
10.	Which of the following is not a compression member?						
	(a) Strut	(b) Tie	(c) Rafter	(d) Boom			
11.	(Answer any three of the following questions) Design the Lap joint for the plates of sizes 100×16 mm and 100×10 mm thick connected so as to transmit a factored load of 100						
		PART – B	(3 x 8= 24 Marks)				
	kN using single row of 16 mm diameter bolts of grad 4.6 and plate						
	of 410 grade						
12.	Design a circular tank with a flexible base for capacity of 5 Lakh litres. The depth of water is to be 4m. Free board=200mm. Use M20 concrete and grade I steel. Permissible direct tensile stress in concrete =1.2 N/mm ² .Permissible stress in steel in direct tension=100N/mm ² .Sketch the details of reinforcements in tank walls.						
13.	9.0 m and ca side for a N 70-R (both	lid slab bridge superstru arriageway of 7.5 m with ational Highway. Loadir wheeled and tracked) or	1.5 m wide footway on ng: Single lane of IRC	either Class	(8)		

- 14. Design the vertical stem of a counter fort retaining wall if the heights of the wall above the ground level are 5.60 m. The safe bearing capacity of the soil is 175 kN/m². The unit weight of soil is 18 kN/m³. The angle of repose of the soil is 30 degree. The coefficient of friction between the soil and concrete is 0.50. Assume the spacing of the counter fort as 3m. Adopt M30 concrete and Fe 415 steel.
- 15. Determine the basic wind intensity for an industrial building (8) situated in Chennai using the following data:

Life of the structure = 50 years

Terrain category = 2

Size of the building = 20 m x 40 m

Height of the eave board = 10 m

Topography = $slpoe < 3^{\circ}$ Slope = 1 in 4.