Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 54903

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fourth Semester

Chemical Engineering

15UCH403 - MECHANICAL OPERATIONS

(Regulation 2015)

Duration: 1.15 hrs		Maximum: 30 Marks
	PART A - $(6 \times 1 = 6 \text{ Marks})$	

	(Allswer ally six of the	Tonowing questi	ons)		
1.	As particle size is reduced				CO1- R
	(a) screening becomes progressively more d	ifficult			
	(b) screening becomes progressively easier				
	(c) capacity and effectiveness of the screen is	s increased.			
	(d) All the above				
2.	For crushing of solids, the Rittinger's law crushing is proportional to	states that the we	ork required for		CO1- U
	(a) the new surface created	(b) the size	reduction ratio		
	(c) the change in volume due to crushing	(d) none of	these		
3.	Screen capacity is proportional to			CO2	2- U
	(a) S (b) 1/S	(c) S^2		(d)	√S
4.	Which of the following screens has the max	imum capacity?			CO2- R
	(a) Grizzlies (b) Trommels (c) S	haking screen	(d) Vibratory	scre	en
5.	Flow of filtrate through the cake in a pladescribed by the equation	ate and frame filt	er press is best		CO3- R
	(a) Kozney- Karman (b) Hagen- Pois	seulle's (c	e) Fanning's	(d) I	Kremser

6.	is proportional to	n case of a rotary drum vacu and the cycle times resistance R_c = cake resistance	ne (where, μ = filtrate visc		CO3- U	
	(a) $\mu^{0.5}$	(b) $1/\mu^{0.5}$	(c) 1/µ	(d) 1/	μ^2	
7.	Weber number is	Weber number is significant and is concerned with the			CO4- R	
	(a) Solid-liquid mi	xing	(b) Liquid-liquid mixir			
	(c) Dispersion of l	iquid in liquid	(d) Dispersion of solid			
8.	Power consumption	on during turbulent flow in age liquid.	gitation tank is proportion	al to the	CO4- R	
	(a) viscosity	(b) thermal conductivity	(c) surface tension	(d)	density	
9.	Screw conveyors a	are			CO5- R	
	(a) Run at very hig	gh rpm	(b) Suitable for sticky material			
	(c) Suitable for hig	ghly abrasive material	(d) All (a),(b) and (c)			
10.	A belt conveyor us		CO5- R			
	(a) run upto 1 km		(b) travel at a speed upto 3	300 metres/	minute.	
	(c) handle material	ls upto 5000 tons/hr	(d) all of the above			
		PART – B (3 x	8= 24 Marks)			
		(Answer any three of th	e following questions)			
11.	Derive the equation on the solid particle	n and explain the behavior of	f external forces acting	CO1- U	(8)	
12.	Discuss the basic principles involved in the benefication of ores by froth flotation. With suitable examples, explain the roll of					
13.	collectors, frothing agents and modifiers in the operation. Explain the construction and working of plate and frame filter press With neat sketch.				(8)	
14.						
15	Explain the concepts involved in the operation of pneumatic conveying CO5- U of solids					