Reg. No.:	
-----------	--

Question Paper Code: 54902

B.E. / B.Tech. DEGREE EXAMINATION, DEC 2020

Fourth Semester

Chemical Engineering

15UCH402 - CHEMICAL PROCESS CALCULATIONS

(Regulation 2015)

(Psychometric chat and Necessary Data book must be provided)

(Any missing data maybe assumed suitably)

Maximum: 30 Marks Duration: 1.15 hrs

PART A - $(6 \times 1 = 6 \text{ Marks})$

	(Answer any six of the following questions)			
1.	1 atmospheric pressure is equal to N/m ²			CO1- R
	(a) 101325	(b) 10^5	(c) 100	(d) 1
2.	The number gram mo	les of the solute dissolv	ved in one litre of solution	CO1- R
	(a) atomic weight	(b) molarity	(c) molality	(d) normality
3.	The reactant that would	ld disappear first if a re	eaction goes to completion	is CO2- R
	(a) initial reactant	(b) limiting reactant	(c) final reactant	(d) product
4.	The basis for material	balance is the law of c	onservation of	CO2- R
	(a) steady state	(b) mass	(c) momentum	(d) unsteady state
5.	The temperature of the	e vapour- gas mixture	recorded by a thermometer	r is CO3- R
	(a) WBT	(b) DBT	(c) dew point	(d) humidity
6.	The ratio of partial pr	essure of vapour in ga	s phase to vapour pressur	e CO3- R
	of pure liquid at DBT is			
	(a) humidity	(b) dew point	(c) relative humidity ((d) absolute humidity
7.	When the standard he	at of combustion is neg	gative then the calorific va	lue is CO4- R
	(a) positive	(b) zero	(c) negative	(d) one

8.	Determination of moisture and volatile matter is done by CO4- F			O4- R		
	(a) moisture content	(b) proximate analys	is (c) ultima	ate analysis	(d) combust	ion
9.	1 Calorie is equal to_	J			C	O5- R
	(a) 4.184	(b) 3.18	(c) 6.628		(d) 0	
10.	The heat of formation	of hydrocarbons is ca	lculated by		C	O5- R
	(a) Raoults law	(b) Amagats law PART – B (3	(c) Henry's la 3 x 8= 24 Marks		(d) Hess's la	aw
		(Answer any three of	the following	questions)		
11.	A saturated solution of	of salicylic acid in me	thanol contains	64 kg of	CO1- App	(8)
	salicylic acid per 100	kg of methanol at 29	8 K. Find the	composition		
	of solution in					
	(i) weight % and					
	(ii) mole %.					
12. A single effect evaporator is fed with 10,000 kg/hr of weak liquor CO2- App containing 15% caustic by weight and is concentrated to get thick				(8)		
	liquor containing 40% by weight caustic. Calculate					
	(i) kg/hr of water evaporated and					
	(ii) kg/hr of thick liqu	or obtained.				
13.	The dry bulb temperat	ture and dew point of a	ambient air wer	e found to	CO3- Ana	(8)
	be 302 K and 291 K re	espectively. Baromete	r reads 100 kF	Pa.		
	Calculate:					
	(a) Absolute molal hu	midity,				
	(b) Absolute humidity	,				
	(c) % RH,					
	(d) The % saturation,					
	(e) The humid heat an	d				
	(f) The humid volume	·.				
	<u>Data:</u> Vapor pressure	of water at 291 $K = 2$.0624 kPa			
	Vapor pressure of	of water at $302 \text{ K} = 4.0$	004 kPa			

14. Calculate the GHV and NHV at 298 K (25°c) of the gas having CO4- App (8) following composition by volume:

 $CH_4: 74.4\%,\ C_2H_6: 8.4\%,\ C_3H_8: 7.4\%,\ i-C_4H_{10}: 1.7\%,\ n-C_4H_{10}: 2.0\%,\ i-C_5H_{12}: 0.5\%,\ n-C_5H_{12}: 0.4\%,\ N_2: 4.3\%,\ and\ CO_2: 0.9\%$ Data:

Component	$-\Delta H_c^0 = (gross), kJ/mol$	$-\Delta H^0_c = (net), kJ/mol$
H_2	890.65	802.62
$\mathrm{CH_4}$	1560.69	1428.64
C_2H_6	2219.17	2043.11
$n-C_4H_{10}$	2877.40	2657.32
$n-C_5H_{12}$	3535.77	3271.67
$i-C_5H_{12}$	3528.83	3264.73
i-C ₄ H ₁₀	3535.77	3271.67

15. From the following data compute the enthalpy change of formation for CO5-E (8) NH_3 at $480~^{0}C$

DATA:

 ΔH_f at 25 °C for = -10.96kcal/kmol

$$C_P \text{ for } N_2 = 6.76 + (6.06 \times 10^{-4} \text{T}) + (13 \times 10^{-8} \text{T}^2)$$

$$C_P \ O_2 = 6.85 + (2.8 \times 10^{-4} T) + (22 \times 10^{-8} T^2)$$

 $C_P NH_3 = 6.703 + (0.0063 T)$ where T is in K.