Reg. No. :					
					1

Question Paper Code: 55901

B.E./B.Tech. DEGREE EXAMINATION, DEC 2020

Fifth Semester

Chemical Engineering

15UCH501-CHEMICAL ENGINEERING THERMODYNAMICS-II

(Regulation 2015)

(Steam table and compressibility chart permitted in examinations)

Duration: One hour

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

The activity of component "i" in a homogeneous solution is 1. CO1- R defined as (b) f_t^0/f^0 (c) $f^{-}f_t^0$ (a) f'/f_t^0 (d) $\sqrt{f^{\uparrow}f_t^0}$ In a gaseous mixture, the fugacity of any component in the 2. CO1 R gaseous mixture can be described by Lewis Randall rule, which is (a) $f'=Y_if_i$ (b) $f' = Y_i g_i$ (c) $f' = f_i$ (d) $f'=Y_i$ Pure water is boiling in a closed container with water vapor above. CO2- R 3. What is the associated degree of freedom? (b)1 (a) 0(d) 3(c) 2(d) (c) Depends on temperature as well as Is independent of temperature and pressure pressure Gibbs-Helmholtz equation is given by CO2- R 4. (a) $\left[\delta(\Delta g/T)/\delta T\right]_{n} = -\left[\Delta h/T^{2}\right]$ (b) $[\delta(\Delta g)/\delta T]_p = -[\Delta h/T^2]$ (c) $\left[\delta(\Delta g/T)/\delta T\right]_{n} = \left[\Delta h/T^{2}\right]$ (d) $\left[\delta(\Delta g/T) / \delta T \right]_{p} = - \left[\Delta h / T \right]$ UNIQUAC has found by 5. CO3- R (a) Abrams and Prausnitz (b) Marguels (c) Wilson (d) Van Laar

б.	If f_i is the fugacity of a component, f_i^0 the fugacity of the same CO3 R component at standard state, P_i the partial pressure of the component, then activity and fugacity coefficient are given respectively as,											
	(a) $a_i = f_i/P_i$	(b) $a = f_i/f_i^0$	(c) $a = f_i \times P_i$	(d) $a = f_i \times f_i^0$								
7.	The equilibrium constant at 427° C for the reaction: N ₂ (g) + CO4- 3H ₂ (g) \rightleftharpoons 2NH ₃ (g) is K _p = 9.4 x 10 ⁻⁵ . Calculate the value of $\triangle G^{\circ}$ for the reaction at 427°.c											
	(a) -33 kJ	(b) -54 kJ	(c) 54 kJ	(d) 33 kJ								
8.	The conventional equilibrium constant expression (K _c) for the system CO4- R below is: $2ICl(s) \rightleftharpoons I_2(s) + Cl_2(g)c$											
	(a) $[I_2][Cl_2]/[ICl]^2$	(b) [I ₂][Cl ₂]/2[IC	l] (c) $[Cl_2]$ (d) ($[I_2]$	$I_2] + [Cl_2])/2[ICl]$								
9.	. In traditional Refrigerators in home appliances, what is the type of COS condenser used											
	(a) Natural convecti	on type	(b) Forced convection type									
	(c) Furnace Type		(d) Rotary condensers									
10.	A vapour compressi	CO	5- R									
	(a) compressor		(b) evaporator									
	(c) condenser		(d) all of the mentioned									
		PART –	B (3 x 8= 24 Marks)									
(Answer any three of the following questions)												
11.	Derive the Gibbs – I properties from kno	CO1-U	(8)									
12.	What are azoetrop zoetrope's with the	a CO2-U	(8)									
13.	Derive Redlich-ki	CO3- App	(8)									
14.	Derive the relations free energy change	rd CO4- App	(8)									
15.	List out the importa	CO5- U	(8)									