D N					
Reg. No. :					

Question Paper Code: 91T02

M.E. DEGREE EXAMINATION, NOV 2019

First Semester

Power Electronics and Drives

19PPE102- MODELING AND ANALYSIS OF ELECTRICAL MACHINES

(Regulation 2019)											
Du	ration	num: 100 Marks									
PART - A (5 x $20 = 100 \text{ Marks}$)											
1.	(a)	Develop the Voltage and torque equations of DC machine. Or	CO1- U	(20)							
	(b)	Explain the basic concepts of Rotating machine.	CO1- U	(20)							
2.	(a)	Derive the induction machine model in arbitrarily rotating reference frame.	CO2- U	(20)							
Or											
	(b)	Write short notes on Reference-frame theory , Commonly used reference frames & Transformation between reference frames.	CO2- U	(20)							
3.	(a)	Explain the dynamic performance for 3 phase fault in synchronous machine.	CO3- U	(20)							
		Or									
	(b)	Explain Generalized theory of rotating electrical machine and Kron's primitive machine.	CO3- U	(20)							
4.	(a)	Explain the Frequency response test of synchronous machines.	CO4- U	(20)							
Or											
	(b)	Draw the equivalent circuits of a 2-phase unsymmetrical induction	CO4- U	(20)							

machine using voltage equations in stationary reference-frame

variables.

5. (a) Derive Voltage and torque equation of surface mount permanent CO5-U (20) magnet machine in stator reference frame.

Or

(b) Explain the construction and operating principle of surface & CO5- U (20) interior permanent magnet machines