Reg. No. :		
------------	--	--

Question Paper Code: 91R01

M.E. DEGREE EXAMINATION, NOV 2019

First Semester

Computer Science and Engineering

19PCS101 – ADVANCED DATA STRUCTURES AND ALGORITHMS

(Regulation 2019)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART - A (10 x 2 = 20 Marks)

1.	Define splay tree. List its properties.	CO1- U	(2)
2.	Differentiate Binary search tree and B tree.	CO1- U	(2)
3.	Give the properties of Binomial heap.	CO2- U	(2)
4.	Brief out the Heap Data Structure.	CO2- U	(2)
5.	What is hash function and its types with example.	CO3- U	(2)
6.	Compare and contrast lock-based and lock free concurrent skip list.	CO3- U	(2)
7.	Define graph. How it differs from Tree?	CO4- U	(2)
8.	What is Greedy Approach?	CO4- U	(2)
9.	Differentiate Approximate Algorithm and Randomized Algorithms.	CO5- U	(2)
10.	Differentiate Quick sort and Parallel Quick sort.	CO5- U	(2)
	PART - B (5 x 16 = 80 Marks)		

11. (a) Insert the following sequence of elements into an AVL tree, CO1-App (16) starting with an empty tree: 10, 20, 15, 25, 30, 16, 18, 19. Delete 30 in the AVL tree. Write the procedures to implement AVL Single and Double Rotations.

Or

(b) Consider using a b-tree with minimum degree t = 2. Compare CO1-App (16) this data structure with a red-black tree. Is this data structure better, worse, or the same as a red-black tree in terms of time complexity? Briefly justify your answer.

12. (a) Assume that items a through m with keys CO2-App (16) 3,5,2,7,4,10,8,6,3,6,1,2,9 inserting in alphabetical order into a Fibonacci heaps. Show the heap following the insertions. Then do a delete in and show the resulting heap state. Write for insertion and deletion of Fibonacci heap.

Or

- (b) Construct the Binomial heap for the following sequence of CO2-App (16) numbers 7,2,4,17,1,11,6,8,15,10,20. Also apply the operation of extracting the minimum key in the resulting binomial Heap. Write the procedure for insertion and deletion of binomial heap.
- 13. (a) Explain in detail Collision Resolution Techniques with suitable CO3- U (16) example.

Or

- (b) Briefly discuss about concurrent heap with suitable example. CO3- U (16)
- 14. (a) Consider a phone network design. You have a business with CO4-App (16) several offices; you want to lease phone lines to connect them up with each other; and the phone company charges different amounts of money to connect 7 pairs of cities. Find a set of lines that connects all your offices with a minimum total cost and explain the algorithm in detail.

Or

- (b) Derive Ford-Fulkerson algorithm for finding the maximum flow CO4-App (16) in a network with suitable example.
- 15. (a) Illustrate Approximation Algorithms with an Example. CO5- U (16) Or
 - (b) Explain in detail Parallel algorithms with suitable Example. CO5- U (16)