Reg. No. :

Question Paper Code: 95P29

Ph.D COURSE WORK EXAMINATION, NOV 2019

Elective

CAD / CAM

19PCD529 - Composite Materials and Mechanics

(Regulation 2019)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART - A $(5 \times 20 = 100 \text{ Marks})$

1. (a) Explain monoclinic material with compliance and stiffness CO1-U (20) matrices.

Or

- (b) Show the reduction of anisotropic material stress-strain equations CO1-U (20) to those of a monoclinic material stress-strain equations.
- 2. (a) Find the following for a 60° angle lamina of graphite /epoxy. CO2- App (20) E1=181GPa, E2=10.3GPa, υ 12=0.28,G12=7.17GPa. (a) Transformed compliance matrix (b) Transformed reduced stiffness matrix If the applied stress is $\sigma x = 2$ MPa, $\sigma y = -3$ MPa, $\tau xy = 4$ MPa, also find (c) Global strains (d) Local strains (e) Local stresses 20 (f) Principal stresses (g) Maximum shear stress (h) Principal strains

Or

- (b) For glass epoxy laminate Ef = 85 Gpa, Em = 3.4 GPa, vm = 0.3 CO2- App (20) and vf = 0.25, find the minor Poisson's ratio v21 and G12 for a fiber volume fraction of 70
- 3. (a) Explain Tsai-Hill failure theory used for anisotropic materials. CO3-Ana (20) Show that for unidirectional lamina the failure theory can be written as σ1 2 / X2 σ1σ2 / X2 + σ2 2 / Y2 + τ12 2 / S2 = 1 where σ1, σ2, τ12 are the stress components with respect to principal material direction and X, Y and Z are failure strengths of the lamina.

		Or		
	(b)	Find the stiffness matrices [A], [B] for a three ply $[0/30/-45]$ graphite epoxy laminate. Assume each lamina has a thickness of 5mm. The properties of graphite/epoxy El =181 GPa, Et =10.3 GPa, vlt = 0.28 and Glt =7.17 GPa.	CO3-Ana	(20)
4.	(a)	Explain basic design concept of sandwich construction.	CO4-U	(20)
		Or		
	(b)	Obtain an expression for the flexural modulus of a Sandwich plate with different face thickness. Sandwich plate with different face thickness and material	CO4-U	(20)
5.	(a)	Write short notes on vacuum bag moulding and continuous pultrusion.	CO5-U	(20)
		Or		
	(b)	Explain the applications of resins.	CO5-U	(20)