| Reg. No. : |  |  |  |  |  |  |  |  |  |  |
|------------|--|--|--|--|--|--|--|--|--|--|
|------------|--|--|--|--|--|--|--|--|--|--|

# **Question Paper Code: 43705**

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Third Semester

## Mechanical Engineering

## 14UME305 - ENGINEERING MECHANICS

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1. If the resultant of two equal forces has the same magnitude as either of the forces, then the angle between the two forces is

| (a) $30^{\circ}$ | (b) $60^{\circ}$ | (c) $90^{\circ}$               | (d) $120^{\circ}$    |
|------------------|------------------|--------------------------------|----------------------|
| (u) 50           | (0)              | $(\mathbf{U}) \neq \mathbf{U}$ | $(\mathbf{u}) 1 2 0$ |

2. Concurrent forces are those forces whose lines of action

(a) lie on the same line
(b) meet at one point
(c) meet on the same plane
(d) none of these

- 3. The resultant of the two forces P and Q is R. If Q is doubled, the new resultant is perpendicular to P. Then
  - (a) P = Q (b) Q = R (c) Q = 2R (d) none of these
- 4. Three forces acting on a rigid body are represented in magnitude, direction and line of action by the three sides of a triangle taken in order. The forces are equivalent to a couple whose moment is equal to
  - (a) Area of triangle (b) Twice the area of triangle
  - (c) Half the area of triangle (d) None of these
- 5. The centre of gravity of a quarter-circle lies at a distance of ...... from the base measured along the horizontal radius
  - (a)  $\frac{3\pi}{4r}$  (b)  $\frac{4r}{3\pi}$  (c)  $\frac{3r}{8}$  (d)  $\frac{8}{3r}$

- 6. Moment of inertia of a circular section about an axis perpendicular to the section is (a)  $\pi d^3/16$  (b)  $\pi d^3/32$  (c)  $\pi d^4/32$  (d)  $\pi d^4/64$
- 7. The range of a projectile is maximum, when the angle of projection is
  - (a)  $30^{\circ}$  (b)  $45^{\circ}$  (c)  $60^{\circ}$  (d)  $75^{\circ}$

8. During elastic impact, the relative velocity of the two bodies after impact is \_\_\_\_\_\_ the relative velocity of the two bodies before impact.

| (a) equal to              | (b) less than    |
|---------------------------|------------------|
| (c) equal and opposite to | (d) greater than |

9. The maximum frictional force, which comes into play, when a body just begins to slide over the surface of the other body, is known as

| (a) static friction   | (b) dynamic friction        |
|-----------------------|-----------------------------|
| (c) limiting friction | (d) coefficient of friction |

10. The bodies which rebound after impact are called

| (a) inelastic bodies                    | (b) elastic bodies |
|-----------------------------------------|--------------------|
| (c) neither elastic or inelastic bodies | (d) None of these  |

PART - B (5 x 2 = 10 Marks)

- 11. What is the difference between a resultant force and equilibrant force?
- 12. Distinguish between statics and dynamics with examples.
- 13. Explain polar moment of inertia.
- 14. What is Impulse of force?
- 15. Explain limiting friction.

PART - C (5 x 16 = 80 Marks)

16. (a) Determine the length of the cord AC in figure below so that the 8 kg lamp is suspended in the position shown. The undeformed length of the spring AB is 0.4 m and the spring has a stiffness of 300 N/m. (16)



- (b) Particle 'O' is acted on by the following forces Determine the resultant force.
  - (i) 20 N inclined  $30^{\circ}$  North of East
  - (ii) 25 N towards North
  - (iii) 30 N towards North West
  - (iv) 35 N inclined  $40^{\circ}$  to South of West, Find the resultant. (K2) (16)
- 17. (a) Two beams AB and CD are shown in figure. A and D are hinged supports. B and C are roller supports. (i) Sketch the free body diagram of the beam AB and determine the reactions at the supports A and B. (ii) Sketch the free body diagram of the beam CD and determine reactions at the supports C and D. (16)

#### Or

(b) Find the pin reaction at *A* and the knife-edge reaction at *B*. (16)



All Dimensions are in 'mm'

18. (a) Determine the coordinates of the centroid of the plane area shown in below figure. (16)



43705

- (b) Find the moment of inertia of a T section of flange 100 mm x 30 mm and web 20 mm x 80 mm about its centroidal axes.
   (16)
- 19. (a) (i) A car starts from rest with a constant acceleration of 4 m/s2. Determine the distance traveled in the 7th second.
   (8)
  - (ii) A body was thrown vertically down from a tower and travels a distance of 3 m in the 5th second of its flight. Find the initial velocity of the body.

#### Or

- (b) A car of mass 300 kg is traveling at 36 km/h on level road. It is brought to rest, after traveling a distance of 5m. What is the average force of resistance acting on the car? Find it by applying.
   (16)
  - (i) Law of conservation of Energy
  - (ii) Work-Energy method
  - (iii) D-Alembert's principle
- 20. (a) What should be the value of the angle  $\theta$  so that motion of the 390 N block impends down the plane? The co-efficient of friction  $\mu$  for all surfaces is 1/3. (16)



(b) A pull of 250N inclined at 30° in the horizontal plane is required just to move a body kept on a rough horizontal plane. But the push required just to move the body is 300N. If the push is inclined at 30° to the horizontal, find the weight of the body and the coefficient of friction.