Reg. No. :			
------------	--	--	--

Question Paper Code: 33704

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Third Semester

Mechanical Engineering

01UME304 – FLUID MECHANICS AND MACHINERY

(Regulation 2013)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

- 1. Differentiate between steady and unsteady flow.
- 2. What is moment of momentum equation?
- 3. Define boundary layer and give its significance.
- 4. Differentiate Orifice meter and venturi meter.
- 5. Define Reynolds number.
- 6. Define: (i) Euler number (ii) Mach number.
- 7. State the momentum equation. When can it be applied?
- 8. What is Cavitation?
- 9. What do you mean by Positive Displacement Machines?
- 10. What is the use of Indicator Diagrams?

PART - B (5 x 16 = 80 Marks)

		$171111 - B (5 \times 10^{-1} \text{ of Warks})$	
11.	(a)	Discuss the properties of fluids and Types of flow? Or	(16)
	(b)	In a two dimensional incompressible flow the fluid velocities are given by $u = x$ and $u = -y - 4x$. Show that velocity potential exists and determine its form. Find the stream function.	
12.	(a)	Derive Bernoulli's equation by considering the motion of fluid elements along streamline and state the assumptions made in the derivation.	g the (16)
		Or	
	(b)	List out the assumptions involved in Euler's equation of motion. Derive Bernoulli equation from Euler's equation in the case of incompressible flow.	the (16)
13.	(a)	Discuss the various Dimensional Parameters with its application.	(16)
	(b)	Or The efficiency η of a fan depends on density ρ , dynamic viscosity μ of the fangular velocity ω , diameter D of the rotor and the discharge Q. Express efficiency η in terms of dimensionless parameter.	
14.	(a)	Explain in detail about Impulse turbine and Reaction turbine with a sketch. Or	(16)
	(b)	(i) What is axial flow turbine? Name the types of axial flow turbine.	(4)
		(ii) Explain about the axial flow reaction turbine with neat sketch.	(8)
		(iii) Give the importance points to be remembered for an axial flow turbine.	(4)
15.	(a)	(i) Explain the construction and working of a single acting reciprocating pump air vessels fitted.	with
		(ii) Sketch the various types of indicator diagrams of a reciprocating pump.	(8)
		Or	
	(b)	With a neat sketch explain the working of a torque converter.	(16)
			