	Reg. No.:		
	Question	Paper Code: 58764	
B.E.	/ B.Tech. DEGREI	E EXAMINATION, NOV	2019
	One	credit course	
	Mechani	ical Engineering	
15UME864-	BASICS IN REFRIC	GERATION AND AIRCONI	DITIONING
	(Reg	ulation 2015)	
ation: 1.30 hours	Answer	ALL Questions	Maximum: 30 Mark
	PART A - ($10 \times 1 = 10 \text{ Marks}$	
The relative coefficient	ent of performance	is	
(a) Actual COP/theor	retical COP		
(b) Theoretical COP	actual COP		
(c) Actual COP × the	eoretical COP		
(d) None of the abov	e		
In a vapour compress the condenser is	sion system, the co	ndition of refrigerant before	e passing through
(a) Saturated liquid	(b) Wet vapour	(c) Dry saturated vapour	(d) Superheated vapou
One Ton refrigeration	on is equivalent to		
(a) 1 kW	(b) 2.5 kW	(c) 3.5 kW	(d) 5 kW

(d) None of these

(d) Expansion valve

The C.O.P. of a Carnot refrigerator in winter will be as compared to

(b) Lower

Presence of moisture in a refrigerant affects the working of

(b) Condenser

(c) Higher

(c) Evaporator

Duration: 1.30 hours

(a) 1 kW

(a) Same

C.O.P. in summer

(a) Compressor

1.

3.

4.

6.	The COP of a vapour compression plan	t in comparison to vapour absorption plant is			
	(a) More	(b) Less			
	(c) Same	(d) More/less depending on size of plant			
7.	The conditioned air supplied to the room must have the capacity to take up				
	(a) Room sensible heat load only	(b) Room latent heat load only			
	(c) Both room sensible heat and latent h	neat loads (d) None of the above			
8.	re liquid refrigerant from the expansion valve i	nto			
	(a) High pressure liquid refrigerant	(b) Low pressure liquid and vapour refriger	rant		
	(c) Low pressure vapour refrigerant	(d) None of these			
9.	Under cooling in a refrigeration cycle				
	(a) Increases C.O.P	(b) Decreases C.O.P			
	c) C.O.P remains unaltered	(d) Other factors decide C.O.P			
10.	The evaporator changes the low pressure liquid refrigerant from the expansion valve into				
	(a) High pressure liquid refrigerant				
	(b) Low pressure liquid and vapour refrigerant				
	(c) Low pressure vapour refrigerant				
	(d) None of these				
	PART –	B (1 x 20= 20 Marks)			
11.	(a) Write about properties of any three	e types of Refrigerants.	(20)		
	Or				
	(b) Write about types of condensers condensers.	s and working principle of water cooled	(20)		