Reg. No.:					

Question Paper Code: 44704

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Fourth Semester

Mechanical Engineering

		e e	
	14UME404	- THERMAL ENGINEERING	
		(Regulation 2014)	
Du	ration: Three hours Ar	swer ALL Questions	Maximum: 100 Marks
	PART	A - $(10 \times 1 = 10 \text{ Marks})$	
1.	The thermodynamic cycle working	g with air as working cycle is k	nown as
	(a) induction stoke(c) power stoke	(b) compression sto (d) exhaust stoke	oke
2.	Constant volume cycle refers to		
	(a) Diesel cycle(c) Otto cycle	(b) Brayton cycle(d) Dual cycle	
3.	The power developed inside the c	ylinder is called	
	(a) Mechanical efficiency(c) Indicated power	(b) Brake power(d) Thermal efficient	ncy
4.	Carburettor is used for		
	(a) S.I. engines(c) C.I. engines	(b) Gas eng (d) None o	gines f the above
5.	Increasing the velocity and decrea (a) Diffuser (b) Turbi	•	(d) Nozzle

(b) Reaction turbine

(d) Middle head turbine

6. De-Laval turbine is an example of

(a) Impulse turbine

(c) Low head turbine

7. For complete intercooling, the temperature at the inlet and exit of the compressor					or are
	(a) $T_i < T_e$	(b) $T_i > T_e$	(c) $T_i = T_e$	(d) $T_i \neq T_e$	
8. In reciprocating air compressor, the method of controlling the quantity of air delivered done by the					elivered is
	(a) Throttle co	ontrol	(b) Clearance	control	
	(c) Blow off c	ontrol	(d) All the abo	ove	
9.	The C.O.P of an a	ir refrigeration system	n is a vaŗ	oour compression sys	tem.
	(a) More than		(b) Less than		
	(c) Equal to		(d) No such co	omparison	
10.	A sling psychrome	eter measures tempera	ature of		
	(a) Dry bulb		(b) wet bulb		
	(c)dew point		(d) both dry b	ulb and wet bulb	
		PART - B ($5 \times 2 = 10 \text{ Marks}$		
11.	Define air standard	d efficiency and mean	effective pressure.		
12.	List the methods u	sed to find the friction	n power.		
13.	Name the various	types of nozzles.			
14.	What the use is of	inter cooler?			
15.	Define C.O.P of a	refrigerator.			
		PART - C (S	$5 \times 16 = 80 \text{ Marks}$		
16.		pressure and temper t added to the air per	•		27° <i>C</i> . The
		the P-V diagram an of the air standard O	_	ssures and temperatu	ires at all
		calculate the specific ression ratio of 8:1	work and thermal	efficiency of the cy	ycle for a
	Take for air C	$_{v} = 0.72 kJ/kg$ and $\gamma =$	= 1.4.		(16)

Or

(b)	A four stroke SI engine has the compression ratio of 6 and swept volume of 0.15 m ³
	Pressure and temperature at the beginning of compression are 98 kPa and 60°C
	Determine the pressure, volume and temperatures at all salient points if heat
	supplied is 150 kJ/kg. Also find out entropy change, work done, efficiency and mean
	effective pressure of cycle assuming $C_p = 1 \text{ kJ/kg} \cdot \text{K}$, $C_v = 0.71 \text{ kJ/kg} \cdot \text{K}$. Also plot
	the cycle on T-S diagram. (16)

- 17. (a) (i) Explain the working of 4 stroke cycle diesel engine with neat sketch. (8)
 - (ii) Differentiate between SI and CI engines. (8)

Or

- (b) Discuss with suitable sketches the following ignition systems
 - (i) Coil or battery ignition system (8)
 - (ii) Magneto ignition system (8)
- 18. (a) Evaluate the throat area, exit area and exit velocity for a steam nozzle to pass a mass flow of $0.2 \, kg/s$ when inlet conditions are $10 \, bar$ and $250^{\circ}C$ and the final pressure is $2 \, bar$. Assume expansion is isentropic and that the inlet velocity is negligible. Use $pv^{1.3} = \text{constant}$.

Or

- (b) Steam at 10.5 bar and 0.95 bar dryness is expanded through a convergent—divergent nozzle. The pressure of steam leaving the nozzle is 0.85 bar. Find its velocity of steam at throat for max. Discharge, the throat area and steam discharge if the throat area is 1.2cm². Assume the flow is isentropic and there are no friction losses. Take n= 1.135.
- 19. (a) A single stage double acting air compressor is required to deliver $14 m^3$ of air per minute measured at $1.013 \ bar$ and $15^{\circ}C$. The delivery pressure is $7 \ bar$ and the speed $300 \ r.p.m$. Take the clearance volume as 5% of the swept volume with the compression and expansion index of n = 1.3. Estimate
 - (i) swept volume of the cylinder
 - (ii) delivery pressure
 - (iii) indicated power (16)

Or

- (b) Explain with neat sketch the construction and working roots blower and vane type compressor. (16)
- 20. (a) Describe the construction and working of Ammonia-water vapour absorption refrigeration system. (16)

Or

(b) In a standard vapour compression refrigeration cycle, operating between an evaporator temperature of −10°C and a condenser temperature of 40°C, the enthalpy of the refrigerant, Freon-12, at the end of compression is 220 kJ/kg. Show the cycle diagram on T-s plane and calculate: (i) The C.O.P. of the cycle. (ii) The refrigerating capacity and the compressor power assuming a refrigerant flow rate of 1 kg/min. The properties of the Freon-12 are given in the table below.

t(°C)	p(MPa)	h _f (kJ/kg)	h _g (kJ/kg)
-10	0.2191	26.85	183.1
40	0.9607	74.53	203.1

(16)