A		Reg. No. :										
		Question Pape	er Cod	le: 5	5970	02						
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019												
		Elec	ctive									
		Mechanical	Engine	ering								
	15UN	1E902- GAS DYNAMI	CS ANI) JE	Γ PR	OPU	LSI	NC				
		(Regulat	ion 201:	5)								
	(4	Approved Gas Tables an	d Steam	ı tabl	es pe	rmit	ted)					
Dur	ation: Three hours	Maximum: 100 Marks										
		Answer AL	L Quest	ions								
		PART A - (10 x	x 1 = 10	Mar	ks)							
1.	In transonic flow Mach number is CO						1- I					
	(a) 0.8 <m<1.2< td=""><td>(b) 0.8>M<1.2</td><td>(c) 0.</td><td>8<m< td=""><td><1.5</td><td></td><td></td><td>(</td><td>(d) 0</td><td>.9<n< td=""><td>/[<1.2</td><td>2</td></n<></td></m<></td></m<1.2<>	(b) 0.8>M<1.2	(c) 0.	8 <m< td=""><td><1.5</td><td></td><td></td><td>(</td><td>(d) 0</td><td>.9<n< td=""><td>/[<1.2</td><td>2</td></n<></td></m<>	<1.5			((d) 0	.9 <n< td=""><td>/[<1.2</td><td>2</td></n<>	/ [<1.2	2
2.	Identify the Mach n	umber Formula									CO	1- I
	($c = fluid$ velocity, $a = velocity$ of sound)											
	(a) $M = c/a$	(b) M= a/c	(c) M	[=c*a	ı			((d) N	1 = a	- c	
3.	Rayleigh line flow is a flow in constant area duct									CO2	2- R	
	(a) With friction but without heat transfer			(b) Without friction but with heat transfer								
	(c) With both friction	(d) Without either friction or heat transfer										
4.	For Rayleigh flow v	which one is correct.									CO	2- I
	(a) $T_{01} = T_{02}$	(b) $P_{01} = P_{02}$	(c) P	$'_1^* =$	P_2^*		(0	1) N	one	of th	ese	
5.	For oblique shock,	umber CO3- J										
	(a) Is always more than unity			(b) Is always less than unity								
	(c) May be less or n	(d) Can never be unity										
6.	Across a Normal sh									CO	3-1	
	(a) the entropy rem	(b) the pressure and temperature rise										

(c) the velocity and pressure decrease (d) the density and temperature decrease

7.	A turbo-prop is preferred to turbo-jet because									
	(a) It can fly at high elevations (b) It has high propulsive efficiency at high s									
	(c) I	t can fly at super sonic speeds	(d) It has high power for take off							
8.	Which one is Air breathing Engines.									
	(a) H	Rocket Engine	(b) Turbojet Engine							
	(c) H	Ramjet Engine	(d) Both B & C							
9.	A ro	ocket engine uses fo	r the combustion of its fuel.		CO5- R					
	(a) I	ts own oxygen	(b) Compressed atmospheric air							
	(c) S	Surrounding air	(d) None of these							
10.	A ro	ocket engine uses fo	et engine uses for the combustion of its fuel.							
	(a) i	ts own oxygen	eric air							
	(c) s	surrounding air								
	PART – B (5 x 2= 10 Marks)									
11.	. Define Mach cone.									
12.	. Write the practical examples for Rayleigh flow.									
13.	Defi	ine strength of shock wave	CO3- R							
14.	Writ	te about turbo jet.	CO4- R							
15.	List	the different types of rockets	CO5- R							
	PART – C (5 x 16= 80Marks)									
16.	 (a) An air jet at 400 K has sonic velocity. Determine the following CO1- App 1. Velocity of sound at stagnation condition 2. Maximum velocity of jet 3. Stagnation enthalpy 4. Crocco number 									
	Or									
(b) A conical air diffuser has entry and exit diameters of 15cm and 30 COI- cm respectively. The pressure, temperature and velocity of air at entry are 0.69 bar, 340 K and 180 m/s respectively. Determine exit pressure and exit velocity. Assume isentropic flow, γ =1.4 and C_P =1.0 kJ/kgK.										
17.	(a)	The pressure, temperature & M 2bar, 1200° C and 0.7 respectemperature at exit to entry is pressure and temperature of the per kg of gas (iii) the maximum $C_p = 1.22$ KJ/ kg K.	fach number of the gas at exit are ctively. The ratio of stagnation 3.85. Calculate (i) Mach number, he gas entry (ii) the heat supplied heat supplied. Take $\gamma = 1.3$,	CO2- App	(16)					

- (b) A circular duct passes 8.25 kg/s of air at an exit Mach number of CO2- App (16) 0.5. The entry pressure and temperature are 3.5 bar and 38°C respectively and co-efficient of friction is 0.005. If the Mach number at entry is 0.15, determine
 (i) Diameter of the duct
 (ii) Length of the duct
 (iii) Pressure and temperature at exit
 (iv) Stagnation pressure loss
- 18. (a) A jet air at 270K and 0.7bar has an initial mach number of 1.9. If CO3- App (16) it passes through a normal shock wave. Determine the following for downstream of the shock wave Mach number and properties.

Or

- (b) An oblique shock wave at an angle of 33° occurs at the leading CO3- App (16) edge of a symmetrical wedge. Air has a Mach number of 2.1 upstream temperature of 300K and Upstream pressure of 11 bar. Determine the following
 1.Downstream Pressure
 2.Downstream temperature
 3.wedge angle
 4.Downstream Mach number
- 19. (a) Describe the principle of operation of a turbojet engine with neat CO4- U (16) sketch and state its advantages and disadvantages.

Or

- (b) Explain with neat sketch with the principle of operation of a CO4-U (16) ramjet engine and state its advantages and disadvantages.
- 20. (a) Explain with neat sketch the working of Liquid propellant rocket CO5 U (16) engine with merits and demerits.

Or

 (b) Explain the construction and working of Hybrid Propellant CO5 U (16) Rocket Engine with neat illustration.