C

8.

9.

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 53805

B.E./B.Tech. DEGREE EXAMINATION, NOV 2019

Third Semester

Computer Science and Engineering

15UIT305 OPERATING SYSTEMS

(Common to Information Technology)

(Regulation 2015)

		(Regulati	1011 2013)			
Dur	ation: Three hou		L Questions	Maximum: 100 Marks		
		PART A - (5 2	x 1 = 5 Marks			
1.	The number of pro	ocesses completed per unit tii	ne is known as	CO1-	U	
	(a) Output	(b) Throughput	(c) Efficiency	(d) Capacity		
2.	Termination of the	process terminates		CO2-	U	
(a) First thread of the process		the process	(b) First two thread of the process			
	(c) All threads wit	hin the process	(d) No thread with	in the process		
3.	If the resources a occur.	re always preempted from	the same process, _	can CO3-	U	
	(a) Starvation	(b) Deadlock	(c) System crash	(d) Aging		
4.	Thrashing	_ the CPU utilization.		CO4-	U	
	(a) Increases	(b) Keeps constant	(c) Infinity	(d) Decreases		
5.	What is raw disk?			CO5-	U	
	(a) Disk without fi	le system	(b) Disk lacking lo	gical file system		
	(c) Disk having file system		(d) Empty disk			
		PART – B (5 2	x 3= 15 Marks)			
6.	Define operating s	ystem. Write its services.		CO1- U		
7.	Develop synchronization code for readers and writers problem.			CO2- A ₁	pр	

CO₃- U

CO4-U

CO5-U

Give four necessary conditions for deadlock to occur.

With a neat sketch, explain the concept of demand paging.

10. How can the index blocks be implemented in the indexed allocation scheme?

11. (a) Define process and co-operating process. Draw process state diagram CO1- U and explain all states. With a neat sketch, explain the concept of inter process communications.

Or

- (b) With neat sketches, explain distributed, clustered, multi processor and CO1- U real time systems. (16)
- 12. (a) Consider the following set of processes, calculate average waiting time CO2- App and average turn around time using FCFS, SJF, Priority (Highest number implies highest priority) and RR (time quantum = 5sec) CPU scheduling algorithms. All the processes are arrived in the following order at time 0 sec.

Process	Burst Time(sec)	Priority
A	10	5
В	5	10
С	8	4
D	13	8

Or

- (b) Define critical section. What are the minimum requirements that CO2-App should be satisfied by a solution to critical section? Explain Peterson algorithm for two process synchronization to critical section problem.
- 13. (a) Consider a system with 5 processes (P₀,P₁,P₂,P₃, P₄) and 3 resource CO3- U types such as 7 instances of A, 2 instances of B, 6 instances of C.

 Resource-allocation state at time t₀:

Dragg	Al	locat	ion	M	Maximum			
Process	A	В	C	A	В	С		
P_0	0	1	0	1	1	0		
P_1	2	0	0	4	0	2		
P ₂	3	0	3	4	0	3		
P ₃	2	1	1	3	1	1		
P ₄	0	0	2	0	0	4		

- (i) Write the Available and Need matrix.
- (ii) Is the system in a deadlocked state? If yes, justify your answer for deadlock. If not, which sequence results in finish[i] == true for all P_i ?

Or

(16)

14.	(a)	Consider the following page reference string 5, 6, 7, 0, 5, 1, 2, 0, 5, 3, 0, 4, 2, 3, 6, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 How many page faults would occur for the following replacement algorithms? LRU, FIFO and Optimal Assuming three frames that all frames are initially empty.	CO4-U	(16)
		Or		
	(b)	Define file access and directory. Explain the concept of sequential and direct access methods. Explain one level, two level and tree structured directories.	CO4-U	(16)
15.	(a)	A hard disk having 500 cylinders / tracks, numbered from 0 to 499. The drive is currently serving the request at cylinder 143, and the previous request was at cylinder 125. The status of the queue is as follows: 86, 470, 13, 177, 448, 150, 102, 175, 130 What is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests for each of the following disk -scheduling algorithms? (i) FCFS	CO5- U	(16)
		(ii) C-SCAN		
		(iii) LOOK		
	(iv) SSTF			
		Or		
	(b)	Summarize the importance of man storage structure.	CO5- U	(16)

(b) Define paging. With neat diagram, explain hardware support for paging CO3- U

and how logical address is translated into physical address.

(16)