Reg. No.:					

(d) O(n log n)

Question Paper Code: 44824

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Fourth Semester

Electrical and Electronics Engineering

14UIT424 - DATA STRUCTURES AND ALGORITHMS

		(Common to EIE and	ice branches)	
		(Regulation	2014)	
Dι	ration: Three hours			Maximum: 100 Marks
		Answer ALL (Questions	
		PART A - (10 x 1	= 10 Marks)	
1.	When overloading u arguments.	nary operators using Fr	iend function, it re	equires
	(a) Zero	(b) One	(c) Two	(d) Three
2.	A Constructor that d Constructor.	oes not have any param	eters is called	
	(a) Custom	(b) Parameterized	(c) Copy	(d) Default
3.	Class X, class Y and inheritance.	class Z are derived from	m class BASE. Th	is is
	(a)Multiple	(b) Multilevel	(c)Hierarchical	(d)Single
4.	(a) One function		•	
5.	The complexity of B	Subble sort algorithm is		

(c) O(n2)

(b) O(log n)

(a) O(n)

6.	Linked lists are be	est suited			
		ely permanent collection e of the structure and the		are constantly	
	(c) for both of (d) none of the	f above situation ese			
7.	Which algorithm (a) bubble sor (c) merge sor		conquer programmi (b) selection so (d) shell sort		
8.	How many loops	are there in Minimum S	panning Tree?		
	(a) One	(b) Two	(c) Many	(d) None	
9.	The complexity o (a) O(n)	f Bubble sort algorithm (b) O(log n)	is (c) O(n ²)	(d) $O(n \log n)$	
10.	Which of the fo	ollowing algorithm des	sign technique is	used in the quick so	ort
	(a) Dynamic _j (c) Divide and		(b) Backtrackin (d) Greedy met		
		PART - B (5 x 2	2 = 10 Marks)		
11.	List out the rules	for defining operator over	erloading.		
12.	Write the syntax of	of pure virtual function.			
13.	Define Algorithm	. List the characteristics	of an algorithm.		
14.	•	es will be there in a nodes? Justify your ans	•		/ed
15.	Define Sorting. L	ist out its types.			
		PART - C (5 x 1	6 = 80 Marks		
16.	(a) Explain in de in OOP.	tail (i) Tokens (ii) Funct	ions in C++ and (ii	•	6)
		Oi	r		
	-	namic initialization of in C++? Illustrate.	objects? Why is		it 16)

17.	(a)	Define Inheritance. Explain the types of inheritance in detail with example. (16)				
		Or				
	(b)	Explain exception handing in detail with example programs. (16)				
18.	(a)	(i) Let <i>P</i> be a pointer to a singly linked list. Show how this list may be used as a stack. That is, write algorithms to push and pop elements. Specify the value of <i>P</i> when the stack is empty. (8)				
		(ii) Define Hashing. How do collisions happen during hashing? Explain the different techniques resolving of collision. (8)				
		Or				
	(b)	Write an ADT to implement stack of size N using an array. The elements in the stack are integers. The operations to be supported are PUSH, POP and DISPLAY. Taken into account the exceptions of stack overflow and stack underflow. (16)				
19.	(a)	Write routines to implement the basic binary search tree operations with suitable examples. (16)				
		Or				
	(b)	What is a Binary Search Tree (BST)? Make a BST for the following sequence of numbers.				
		45, 36, 76, 23, 89, 115, 98, 39, 41, 56, 69, 48 Traverse the tree in Preorder, Inorder and Postorder. (16)				
20.	(a)	Develop Heap sort, sort the given numbers 12, 56, 34, 78, 23 and write its routine. (16)				
		Or				
	(b)	(i) Sort the following sequence of keys using merge sort: 66, 77, 11, 88, 99, 22, 33, 44, 55 (8)				
		(ii) Write an algorithm to sort a given list using quick sort method. Describe the behaviour of quick sort when input is already sorted. (8)				