	Reg. No	o . :									
г											
	Question Pa	per (Code: 4	476 0	2						
B.E.	B.Tech. DEGR	EE EX	AMINA	TION	N, N(OV 2	019				
	Sev	enth S	emester								
Instrumentation and Control Engineering											
14UIC702 - DIGITAL CONTROL SYSTEM											
	(Re	egulatio	on 2014))							
Duration: Three hours							Max	imu	m: 10	00 M	larks
	Answe	er ALL	Questic	ons							
	PART A	· (10 x	1 = 10 N	Marks	3)						
1. A continuous-time j	periodic signal x	(t), hav	ing a po	eriod	T, is	con	volve	ed w	ith it	tself.	The
resulting signal is											
(a) Not periodic	(a) Not periodic (b) Periodic having a period T										
(c) Periodic havir	ng a period 2T	(d)	(d) Periodic having a period T								
2. In the sampled data	control system, th	ne cont	roller ou	ıtput i	is giv	en to)				
(a) Comparator	(b) Process	(c)	Final co	ontrol	elen	nent	(0	d) Ze	ero o	rder	hold
3. Shanon's sampling t	heorem states										
(a) $f_s \ge f_m/2$	(b) $f_s \leq f_m/2$	(c) 1	$f_s \ge 2f_m$				(d) f	$r_{s} \leq 2$	f_{m}		
4. The holding device v	which uses n th ord	der pol	ynomial	for a	ppro	xima	tion	is ca	lled		
(a) $(n+1)^{th}$ order	holding	(b) (r	n-1) th ord	der ho	olding	g dev	vice				
(c) n th order holding device (d) Zero order holding device											
5. Z-transform of 6 δ (k	+2) is										

(b) $6 z^2$ (c) $2 z^6$ (d) $6z^{-2}$

5. Z-transform of 6 δ (k+2) is

(a) $\frac{6z}{z-2}$

6. The stable region	of Z plane is							
(a) Inside the unit circle		(b) C						
(c) Left half plane		(d) R						
7. For the n th order	system, the number	of state equation	s will be					
(a) 1	(b) n	(c) $(n+1)/2$	(d) n/2					
8. A state space mo	del is fundamentally	y different from t	ransfer function model	in account of				
(a) Zeroes		(b) Sin	(b) Single input & single output					
(c) Initial con	nditions	(d) Pol	(d) Poles					
9. The velocity form	n of PID controller	computes						
(a) $m(n-1) - 1$	m(n)	(b) m((b) $m(n-1) + m(n)$					
(c) $m(n) - m(n-1)$ (d) $m(n) + m(n+1)$								
10. In dead beat cor	ntroller $C(z) / R(z)$ i	S						
(a) z^{-2}	(b) z^{-1}	$(c) z^{-n}$		(d) z^{+1}				
PART - B (5 x $2 = 10 \text{ Marks}$)								
11. Distinguish bet	ween analog and dis	screte signals.						
12. Define acquisit	ion time, aperture ti	me and droop rate	te with respect to sampl	e and hold				
operation.								
13. State and prove	convolution theore	m in z-transform	ı .					
14. Define Controll	lability and observa	bility in state spa	ce approach.					
15. State deadbeat	algorithm							
	PART -	$C (5 \times 16 = 80)$	Marks)					
16. (a) With block of	diagram, describe a	digital temperate	are control system	(16)				
(b) Describe in	detail the configurat	tion of the basic	digital control scheme.	(16)				

17. (a) (i) Obtain the inverse Z-transformation of the discrete function $G(z) = \frac{z}{3(Z - 0.333)(Z - 1)}$ (4)

(ii) Derive the expression for the sampled spectra and explain aliasing effect using the frequency domain considerations. (12)

Or

- (b) (i) Derive the transfer function of Zero Order Hold. (8)
 - (ii) Illustrate the significance of various time domain modes of discrete time systems.

. (8)

18. (a) Compare open loop hybrid sampled data control systems and open loop discrete input data control systems (16)

Or

- (b) (i) Obtain the modified z-transform of unit ramp function. (6)
 - (ii) Determine the stability using Jury's test for the system with the following characteristic polynomial. (10)

$$\Delta(Z) = Z4 - 1.2Z3 + 0.07Z2 + 0.3Z - 0.08$$

19. (a) (i) Obtain the state space model for the given pulse transfer function in decoupled form. (8)

$$\frac{y(z)}{u(z)} = \frac{2(z+5)}{(z+2)(z+3)(z+4)}$$

(ii) Find state transition matrix $\Phi(k)$ if the system state matrix is given as (8)

$$A = \begin{pmatrix} -3 & 0 \\ 0 & -2 \end{pmatrix}$$

Or

(b) Obtain the phase variable form of state model of the following system and find the

Controllability of the same (16)

$$y(k+3) + 6y(k+2) + 9y(k+1) + 6y(k) = u(k)$$

20. (a) Explain the design of state regulator and observer with suitable examples. (16)

Or

(b) Design a pole placement controller (using state feedback) for the given digital system with state model,

$$\begin{bmatrix} x_1(k+1) \\ x_1(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

The desired closed loop poles should be taken as $0.5 \pm j \ 0.5$

(16)