A
Δ
∡ ъ

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 53306

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Third Semester

Electrical and Electronics Engineering

15UEE306 -DIGITAL LOGIC CIRCUITS

		13UEE300 -DIGI	IAL LOGIC CIRCUITS					
		(Regu	lation 2015)					
Dura	ation: Three hours	: 100 Marks						
	Answer ALL Questions							
	PART A - $(10 \times 1 = 10 \text{ Marks})$							
1.	Convert binary 11111	CO1- R						
	(a) EE2 ₁₆	(b) FF2 ₁₆	(c) 2FE ₁₆	(d) FD2 ₁₆				
2.	2. Any signed negative binary number is recognized by its							
	(a) MSB	(b) LSB	(c) Byte	(d) Nibble				
3.	Canonical form is a un	CO2- R						
	(a) SOP	(b) Minterm	(c) Boolean Expressions	(d) POS				
4.	The format used to present the logic output for the various combinations of logic inputs to a gate is called							
	(a) Truth table.		(b) Input logic function.					
	(c) Boolean constant		(d) Boolean variable					
5.	What is a shift register that will accept a parallel input, or a bidirectional serial load and internal shift features, called?							
	(a) Tri state	(b) End around	(c) Universal	(d) Conversion				
6.	A basic S-R flip-flop basic logic gates?	CO3- R						
	(a) AND or OR	(b) XOR or XNC	OR (c) NOR or NAND	(d) AND or NOR				

7.	Table that is not a part of asynchronous analysis procedure is					CO4- R		
	(a) T	Transition table	(b) State table	(c) Flow table	(d) Excitation	on table		
8.	How	w much locations a	n 8-bit address code c	an select in memory?		CO4- R		
	(a) 8	3 locations	(b) 256 locations	(c) 65,536 locations	(d) 131,072	locations		
9.	Eacl	n unit to be model	ed in a VHDL design	is known as	CO5- F			
	(a) I	Behavioral model		(b) Design architecture				
	(c) I	Design entity		(d) Structural model				
10.	the l	ch of the following ocal component?	ng describes the conn	ections between the enti	ty port and	CO5-R		
	` /	•						
	(c) (One to one map		(d) Many to many map				
			PART - B (5 x)	2= 10 Marks)				
11.	Why Excess-3 code is called self complementing code? CO1- U							
12.	Draw the circuit diagram of full adder using two half adders. CO2- R							
13.	Compare Moore and Melay circuits.							
14.	Defi		CO4- R					
15.	5. What are the various modeling techniques in VHDL?							
			PART – C (5	x 16= 80 Marks)				
16.	(a)	(i) Encode the b Hamming Code.	pinary word 1011 into	o seven bit even parity	CO1- U	(10)		
		(ii) Write short n	otes on binary weighte Or	ed code.	CO1- U	(6)		
	(b)	(i) With a neat TTL NAND gate	-	e working of two input	CO1- U	(10)		
		(ii) Compare tote	em pole and open colle	ector outputs.	CO1- U	(6)		
17.	(a)	Design a 3:8 deand maxterm ger	nerator.	operation as a minterm	CO2- Ana	(16)		
			Or					
	(b)	Design a circuit equivalent gray of		r bit binary code into its	CO2- Ana	(16)		

18. (a) Design a MOD-7 synchronous counter using JK flip flop and CO3- Ana (16)implement it. Also draw its timing diagram.

Or

Design a clocked sequential circuit for the state diagram CO3-Ana (b) (16)shown in Fig.1 using T flip flop.

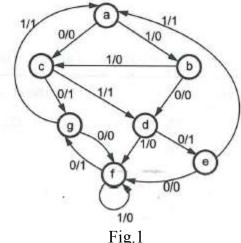
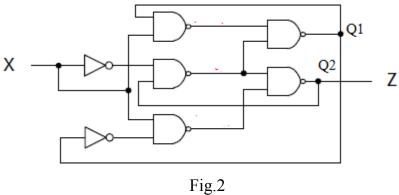



Fig.1

- 19. (a) (i) Analyze the following asynchronous network shown in Fig.2 using a flow table. Starting in the total stable state for which X = Z = 0.
 - (ii) Are there any races in the flow table?

Or

Show how to programme the fusible links to get a 4 bit gray CO4-Ana (16)(b) code from the binary inputs using PLA and PAL and compare the design requirements with PROM.

CO4-Ana

(16)

20. (a) Write a VHDL program for full adder using structural CO5-U modeling and 1: 4 DMUX using data flow modeling. (16)

Or

- (b) (i) Explain the various operators supported by VHDL. CO5-U (8)
 - (ii) Write a VHDL code to realize a decade counter with CO5-U (8) behavioral modeling.