A		Reg. No. :								
Question Paper Code: 53303										
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019										
Third Semester										
Electrical and Electronics Engineering										
15UEE303 - FIELD THEORY										
(Regulation 2015)										
Duration: Three hours				Maximum: 100 Marks						
	Answer ALL Questions									
1	The meridian areas	PART A - (10 x		S)		CO1 D				
1.	_	rate of charge of that f				CO1- R				
2	(a) Gradient	(b) Divergence	(c) Curl	1	(d) D	el operator				
2.		the vectors are said to	-	I		CO1- R				
2	(a) A.B=0	(b) AxB=0	(c) Δ .A=0	1 .	(d) Δ	xA=0				
3.		etric field intensity and		density		CO2- R				
	(a) ε/σ	(b) εσ	(c) Ε ε		(d) σ					
4.	-	conducting body remai			ody	CO2- R				
	(a) Inside	(b) Outside	(c) Surface		(d) A	ll the above				
5.	Polarization is defined	d as				CO3- R				
	(a) Dipole moment / volume			(b) Dipole moment / Area						
	(c) Volume/ dipole m	(d) Dipole moment / length								
6.	Relation between B&	H is				CO3- R				
	(a) B=µH	(b) H=µB	(c) B=µ/H		(d) None of	the above				
7.	The concept of dis attributed to	splacement current	was a majoi	c contribu	ition	CO4- R				
	(a) Faraday	(b) Lenz	(c) Maxwel	1	(d) L	orentz				

8.	Circ	cuit theory is			CO4- R
	(a) [Three dimensional analysis	(b) Reference frequency		
	(c) §	(c) Simple to understand (d) Voltage is not directly in		involved	
9.	For	a uniform plane wave E and H is at	CO5-		
	(a) I	Parallel to each other	(b) Perpendicular to each o	other	
	(c) I	(c) Different frequency (d) Different phase			
10.	The	characteristic impedance of free space is	is given by Ohms CO5-		
	(a) 3	(b) 375	(c) 376	(d) 378	
		PART - B (5 x)	2= 10 Marks)		
11.	Give the physical significance of Divergence.				CO1 R
12.	. Recall the formula for finding force between two charges in vector form.				CO2 R
13.	. State Gauss law for magnetic field.				CO3 R
14.	. Compare Transformer and Motional EMF				CO4 A
15.	. Write the velocity of wave propogation in lossless medium				CO5 R
		PART – C (5	x 16= 80Marks)		
16.	(a)	Explain in detail the basics of different derive its relevant equations	co-ordinate system and	CO1- App	(16)
		Or			
	(b)	Verify the divergence theorem for $A=xy^2 ax+y^3 ay+y^2 z$ az and the surface $0 < x < 1, 0 < y < 1, 0 < z < 1$.	-	CO1- App	(16)
17.	(a)	State and explain the boundary condition Or	ons for electric field	CO2- App	(16)
	(b)	(i) Derive poisson's and Laplace equation	ion?	CO2- App	(8)
		(ii) Find the electric field field intensity infinite straight wire .	at a distance <i>x</i> above an	CO2- App	(8)

18.	(a)	(i) State and Explain Biot savarts law.	CO3- App	(6)			
		(ii) Obtain the flux density and field intensity for circular coil.	CO3- App	(10)			
	Or						
	(b)	(i)Establish the relation of force between current carrying parallel conductors	CO3 - App	(8)			
		(ii) Determine the force between two long parallel wires of 200m length separated by 5cm in air and carrying currents of 40A same direction and in opposite direction	CO3 - App	(8)			
19.	(a)	State and derive the Maxwell's equation in Integral form and point form for conducting medium	CO4- U	(16)			
Or							
	(b)	(i) Develop the equation for conduction current density.	CO4- U	(8)			
		(ii) Compare Field Theory and Circuit Theory	CO4- U	(8)			
20.	(a)	Deduce the Wave equation for time varying fields in free space	CO5- App	(16)			
		Or					
	(b)	State poynting theorem. Derive the expression for it	CO5- App	(16)			