l					
l					
l					
l					
l					

Question Paper Code: 43302

	B.E. / B.Tech. DEGREE I	EXAMINATION, NOV 2019				
	Third	Semester				
	Electrical and Ele	ctronics Engineering				
	14UEE302 - DC MACHIN	IES AND TRANSFORMERS				
	(Regula	ation 2014)				
	Duration: Three hours	Maximum: 100 Marks				
	Answer A	LL Questions				
	PART A - (10	x 1 = 10 Marks				
1.	The principle of dynamically induced emf is utilised in					
	(a)) Choke	(b) Transformer				
	(c) Generator	(d) Thermocouple				
2.	Hysteresis loss can be minimised by selection	Hysteresis loss can be minimised by selecting a magnetic material having				
	(a) large B/H loop area	(b) High resistivity				
	(c) High retentivity	(d) Low hysteresis coefficient				
3.	Which generator has poorest voltage regu	Which generator has poorest voltage regulation?				
	(a) Series	(b) Shunt				
	(c) Long shunt compound	(d) Short shunt compound				
4.	Interpole winding is connected in					
	(a) Series with armature	(b) Series with main poles				
	(c) Parallel with armature	(d) Parallel with main poles				
5.	The speed of the dc motor can be controlled by varying					
	(a) Its flux per pole	(b) Resistance of armature circuit				
	(c) Applied voltage	(d) All of the above				

6.	The direction of rotation of conductors of a	DC motor can be determined by					
	(a) Ampere law	(b) Fleming's left hand rule					
	(c) Fleming's right hand rule	(d) Lenz's law					
	If a transformer primary is energised put voltage will be	from a square wave voltage source, its					
	(a) Square wave	(b) Sine wave					
	(c) Pulse wave	(d) Triangular wave					
8.	Transformer action requires a						
	(a) Constant magnetic flux	(b) Increasing magnetic flux					
	(c) Alternating magnetic flux	(d) Alternating electric flux					
9.	One of the main advantages of Swinburne's	test is that it					
	(a) its applicable for shunt motors	(b) needs one running cost					
	(c) its very economical and convenient	(d) ignore any charge in iron loss					
10.	The main purpose of performing open-circu	it test on a transformer is measure its					
	(a) cu loss	(b) core loss					
	(c) total loss	(d) insulation resistance					
	PART - B (5 x 2	2 = 10 Marks)					
11.	What is co-energy? What is it's use?						
12.	What are cumulative and differential compo	ound generators?					
13.	Write the torque equation of a dc motor.						
14.	Define all-day efficiency.						
15.	What are the losses in a DC machines?						
	PART - C (5 x 1	6 = 80 Marks					
16.	(a) Derive an expression for mechanical for O						
	(b) (i) Explain the concepts of rotating ma	gnetic field. (8)					
	(ii) Obtain the torque equation for roun	d rotor machines. (8)					

17.	(a)	Explain with a neat sketch, the construction of a dc machine.	(16)
		Or	
	(b)	(i) An 8 pole lap connected DC shunt generator delivers an output of 240 500V. The armature has 1408 conductors and a 60 commutator segments. brushes are given a lead of 4 segments from no- load neutral axis estimated demagnetizing and cross magnetizing AT/pole.	If the
		(ii) Estimate the reactance voltage for a D.C shunt machines having 55 comm segments brush width in commutator segments of 4cm, self-inductant 0.153<i>mh</i> and current per coil of 27<i>A</i>. The speed of the machine is 700 <i>rpm</i>.	
18.	` '	Sketch and explain the speed-current, speed-torque and torque-cracteristics of a shunt motor, series motor and compound motor.	urren (16)
		Or	
	(b)	Explain the different methods used for the speed control of dc shunt motor.	(16)
19.	(a)	Draw the no-load phasor diagram of a transformer and explain.	(16)
		Or	
	(b)	The primary and secondary windings of a $30KVA$, 6.6 $KV/230V$ transformer resistance of 10Ω and 0.013Ω respectively. The leakage reactance of the wir are 17Ω and 0.022Ω . Estimate the percentage voltage regulation of the transf when it is delivering full-load at 0.8 power factor lagging at the rated voltage.	ndings
20.	(a)	Explain any two methods of testing of DC machines. Or	(16)
(b)	(i)	What are the losses occurring in transformer and explain.	(8)
` /	` /	(ii) Derive the condition for maximum efficiency in a transformer?	(8)