A		Reg. No. :											
		Question Pap	er (Code	e: 5	5304	1						
	B.E . /	B.Tech. DEGREE	EXA	MIN	ATIO	DN, N	NOV	<i>2</i> 01 /	.9				
		Fifth	Seme	ester									
		Electrical and Ele	ectror	nics E	Engir	neerir	ıg						
	15	UEE504-ELECTRI	CAL	MAG	CHIN	VE D	ESI	GN					
		(Regula	ation	2015	5)								
Dur	ation: Three hours	Answer A	LL Ç	Juest	ions			Ν	laxir	num	: 100) Ma	rks
		PART A - (10) x 1	= 10	Mar	ks)							
1.	The apparent flux density is defined as _											CO	1 - R
	(a) Actual flux/tooth	(b) Total flux/tooth area											
	(c) Total flux=tooth a	area		(d) N	lone	of th	ese						
2.	Stacking factor depen	nds upon										CO	1 - R
	(a) Thickness of core	and insulation		(b) T	hick	ness	of c	ore					
	(c) Thickness of insu	(d) Converter											
3.	In lap winding, equalizer rings are used since						CO	2- R					
	(a) Number of parallel path is = two (b) Number of parallel path is =						nun	ber	of po	oles			
	(c) Number of conductors is large (d) Voltages are slightly varying							g					
4.	The number of commutator segments in a dc machine is equal to the no.						10. 0	f	_	CO	2- R		
	(a) Coil-sides	(b) Turns	(c) Co	oils				(d) S	lots			
5.	The leakage flux in a transformer depends upon the value of										CO	3- R	
	(a) Load current (b) Supply frequency	(c) M	utua	l flux			(d) N	lone	of th	e ab	ove
6.	The function of oil in a transformer is										CO	3- R	
	(a) to provide insulation and cooling (b) to provide p					pro	tection	on ag	gains	t ligl	ntnin	g	
	(c) to provide protection to windings (d) to provide lubrication												

7.	In the case of induction motors the ratio of length to pole pitch for minimum cost is taken as							CO4- R		
	(a)	1.0	(b) 1.5 to 2	(c)	2 to 3	(d)	3 to 5			
8.	The number of parallel paths in an integral slot winding with P poles is equal to							CO4- R		
	(a)]	р	(b) 2P	(c)	P/2	(d)	P/4			
9.	Tur	bo alternators	are characterized by					CO5- R		
	(a) Short diameters and large axial lengths (b) Short diameters and small axial lengths									
	(c) Large diameters and small axial length (d) Large diameters and large axial length							lengths		
10.	The use of salient poles on high speed alternators will cause						CO5- R			
	(a) Excessive windage loss and excessive noise (b) Excessive windage loss but reduced									
	(c) Reduced windage loss but excessive noise (d) Reduced windage loss and low noise									
			PART – B	(5 x 2= 1	0Marks)					
11.	Define Iron space factor.							CO1- R		
12.	2. State the relation between the armature diameter and commutator diameter					neter for	CO2- R			
	vari	ous ratings of	de machine.							
13.	How yoke dimensions of a transformer are fixed?							CO3- R		
14.	• Mention the factors influencing length of air gap of an Induction motor.							CO4- R		
15.	Define SCR. What are the effects of SCR on machine performance? CO5- R							CO5- R		
			PART –	C (5 x 16	5= 80Marks)					
16.	(a)	Explain the	various factors that de	cide the c	hoice of Specifi	с	CO1- U	(16)		
Magnetic and Electric loading.										
Or										
	(b)	(i) Classify	the insulating mat	erials us	sed in the ele	ctrical	CO1- U	(8)		
	machines based on thermal considerations.									
	(ii) What are the major considerations accounted for the good CO1-							(8)		

design of electrical machines?

17. (a) (i) Determine the air gap length of a dc machine from the CO2- App (8) following particulars. Gross Length of core=0.12m, number of ducts one and is 10 mm wide, slot pitch=25mm,slot width=10mm, Carter's coefficient for slots and ducts=0.32, gap density at pole centre=0.7 Wb/m², field mmf per pole=3900A, mmf required for iron parts of magnetic circuit = 800A.

(ii) Derive the relationship between real and apparent flux CO2- App (8) densities in the armature teeth.

Or

- (b) Explain the various factors that are affected at the time of CO2-App (16) selection of number of poles in d.c.machines.
- 18. (a) (i) Derive the output equation of a single phase transformer. CO3- App (8)
 - (ii) Determine the dimensions of core and yoke for a 200 kVA, CO3- App (8) 50 Hz, single phasecore type transformer. A cruciform core is used with distance between adjacent limbs equal to 1.6 times the width of core laminations. Assume voltage per turn 14 V, maximum flux density= 1.1 Wb/m^2 , window space factor=0.9, current density 3 A/mm² and stacking factor=0.9.The net iron area is 0.56 d² in a cruciform core where d is the diameter of circumscribing circle. Also the width oflargest stamping is 0.85d.

Or

- The tank of a 1250 kVA natural oil cooled transformer has the CO3- App (b) (16)dimensions length, width and height as 1.55mX0.65mx1.85m respectively. The full load loss is 13.1 kW.Find the number of assuming/m²-°C this transformer due tubes for to radiation=6;W/m²-°C due to convection=6.5;improvement in convection due to provision of tubes=40 percent; temperature rise=40°C; length of each tube=1m;diameter of tubes=50mm.Neglect the top and bottom surfaces of the tank as regards cooling.
- 19. (a) (i) Find the values of diameter and length of stator core of a CO4- App (8) 7.5kW,220V,50Hz,4 pole,3 phase induction motor for best power factor. Given: specific magnetic loading=0.4 Wb/m2; specific electric loading= 22000A/m; efficiency= 0.86; and power factor=0.87.also find the main dimensions if the ratio of core length to pole pitch is unity.

		(ii) Explain the design of rotor bars and slots.	CO4- App	(8)	
		Or			
	(b)	Determine the main dimensions, turns per phase, number of slots, conductor cross section and slot area of a 250 h.p, 3 phase, 50 Hz, 400V, 1410 r.p.m.slip ring induction motor. Assume Bav=0.5 Wb/m2,ac= 30000A/m, efficiency=0.9, and power factor=0.9, winding factor=0.955, current density=3.5A/mm ² . The slot space factor is 0.4 and the ratio of core length to pole pitch is 1.2.	CO4- App	(16)	
20.	(a)	(i) Derive an output equation of synchronous machine.	CO5- App	(8)	
		(ii) Determine suitable stator dimensions for a 500 kVA,50Hz,	CO5- App	(8)	
		3 phase alternator to run at 375 r.p.m.Take mean gap density			
		over the pole pitch as 0.55 Wb/m ² , the specific electric loading as			
		25,000 A/m.The peripheral speed should not exceed 35 m/s.			
		Or			

(b) Explain the steps taken into account in the design of field winding CO5- App (16) of a salient pole machine.