Reg. No. :

# **Question Paper Code: 45303**

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Fifth Semester

Electrical and Electronics Engineering

14UEE503 - POWER SYSTEM ANALYSIS

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1. What will be the per unit impedance of a synchronous motor having a rating of 100 kVA, 13.2 kV and having a reactance of 75  $\Omega$  / ph?

(a) 0.043 pu (b) 0.057 pu (c) 0.036 pu (d) 0.298 pu

2. To control which among the following is the regulating transformer used in a power system?

(a) Power flows (b) Frequency (c) Voltage (d) Power factor

3. What is the value of acceleration factor used in the GS method?

(a) 2.3 - 2.7 (b) 1.6 - 2.0 (c) 1.2 - 1.5 (d) 2.4 - 2.9

4. Gauss Seidal iterative method can be used to solve a set of

(a) linear differential equation only

- (b) linear and non linear algebraic equations
- (c) linear and non linear differential equations
- (d) linear algebraic equation only

5. Which among these is the most severe fault?

| (a) Single line to ground fault | (b) Double line to ground fault |
|---------------------------------|---------------------------------|
| (c) Line to line fault          | (d) Symmetrical fault           |

6. On which among the following factors does the magnitude of the fault current depend?

| (a) Total impedance up to the fault | (b) Voltage at the fault point |
|-------------------------------------|--------------------------------|
| (c) Both (a) and (b)                | (d) None of these              |

7. What is the value of zero sequence impedance in line to line faults?

(a)  $Z_0 = 1$  (b)  $Z_0 = 1$  (c)  $Z_0 = 3 Z_n$  (d)  $Z_0 = 0$ .

8. What is the fault current expression in case of LLG faults?

(a)  $I_f = 3 I_{a1}$  (b)  $I_f = 0$  (c)  $I_f = 3 I_{a0}$  (d)  $I_f = I_{a1}$ 

9. Kinetic energy of 800 *MJ* stored in the rotor at synchronous speed. What is the inertia constant for a 50 Hz four pole turbo generator rated at 100*MVA*, 11 kV

(a) 2 MJ/MVA (b) 8 MJ/MVA (c) 88 MJ/MVA (d) 6 MJ/MVA

10. Which among these is related to the critical clearing time of a fault in a power system?

| (a) Transient stability limit | (b) Steady state stability limit |
|-------------------------------|----------------------------------|
| (c) Frequency limit           | (d) None of these                |

PART - B (5 x 2 = 10 Marks)

- 11. The base KV and Base MVA of a 3  $\phi$ transmission line is 33KV and 10 MVA respectively. Calculate the base current and base impedance.
- 12. What are the types of buses and list the quantities specified and the quantities to be determined from load flow study for various types of buses?
- 13. State the relative frequency of occurrence of various types of faults.
- 14. What is Short-Circuit Capacity (SCC)?
- 15. How to improve the transient stability of power system?

PART - C (5 x 
$$16 = 80$$
 Marks)

- 16. (a) (i) Explain briefly about transmission line model.(8)
  - (ii) Explain the simple algorithm for the formation of Y-bus matrix. (8)

## 45303

- (b) Explain the modelling of generator, load, transmission line and transformer for power flow, short circuit and stability studies. (16)
- 17. (a) Explain the algorithm of Gauss Seidal method for the load flow problem with a neat flow chart and relevant equations. (16)

#### Or

- (b) Explain clearly with detailed flow chart, the computational procedure for load flow solution using N-R method, when the system contains all types of buses. (16)
- 18. (a) A 11 kV, 100 MVA alternator having a sub-transient reactance of 0.25 pu is supplying to a 50 MVA motor having a sub-transient reactance of 0.2 pu through a transmission line. The line reactance is 0.05 pu on a base of 100 MVA. The motor is drawing 40 MW at 0.8 p.f. leading with a terminal voltage of 10.95 kV when a 3-phase fault occurs at the generator terminals. Calculate the total current in generator and motor under fault conditions. (16)

#### Or

- (b) Derive the formula for fault current, fault bus voltages and current through the lines for a 3 phase symmetrical fault at a bus in a power system using Z bus. State the assumptions made in the derivation. (16)
- 19. (a) Derive an expressions for the positive sequence current  $I_{a1}$  of an unloaded generator when it is subjected to a line to line fault. (16)

### Or

- (b) Derive the relationship to determine the fault current for a single line to ground fault on an unloaded generator. Draw an equivalent network showing the interconnection of sequence of networks to simulate single line to ground fault. (16)
- 20. (a) Derive the swing equation of a single machine connected to an infinite bus system and explain the steps of solution by Runge-kutta method. (16)

Or

(b) For the given system a three phase fault occurs at the point P. Find the critical clearing angle for clearing the fault with simultaneous opening of the breakers 1 and 2. The reactance values of various components are indicated on the diagram. The generator is delivering 1.0 pu power at the instant preceding the fault.

