Reg. No. :											
------------	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 45302

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Fifth Semester

Electrical and Electronics Engineering

14UEE502 - CONTROL SYSTEMS

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions (Polar Graph sheets to be provided)

PART A - (10 x 1 = 10 Marks)

- 2. Signal flow graphs can be used to represent
 - (a) only linear systems
 - (b) only nonlinear systems
 - (c) both linear and nonlinear systems
 - (d) time invariant as well as time varying systems
- 3. The undamped systems, the damping ratio is

(a)
$$\zeta = 0$$
 (b) $\zeta = 1$ (c) $\zeta < 1$ (d) $\zeta > 1$

4. The Terzaghi's general bearing capacity equation is represented as

(a)
$$qf = 5.7 c + \overline{\sigma}$$
(b) $qf = c Nc + \overline{\sigma}$. $Nq + 0.5\gamma BN\gamma$ (c) $qf = c Nc + \overline{\sigma}$. Nq (d) $qf = c Nc$

5. The relation between resonant frequency and undamped natural frequency is

(a)
$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$

(b) $\omega_n = \omega_r \sqrt{1 - 2\zeta^2}$
(c) $\omega_r = \omega_n \sqrt{2\zeta^2 - 1}$
(d) $\omega_n = \omega_r \sqrt{2\zeta^2 - 1}$

- 6. The Phase Margin of the system is 0^0 . It represents a
 - (a) Stable system (b) Unstable system
 - (c) Conditionally stable system (d) Marginally stable system
- 7. The number of sign changes in the element of the first column of the routh array denotes
 - (a) the number of zeros of the closed loop system in the RHP
 - (b) the number of poles of the closed loop in the RHP
 - (c) the number of zeros of the closed loop system in the LHP
 - (d) the number of poles of the closed loop in the LHP
- 8. A lead compensator
 - (a) improves the steady state accuracy
 - (c) increases the bandwidth (d) reduces the speed of response

(b) reduces the bandwidth

- 9. The number of state variable of a system is equal to
 - (a) the number of integrators present in the system
 - (b) the number of differentiators present in the system
 - (c) the sum of the number of integrators and differentiators present in the system
 - (d) none of the these
- 10. The state transition matrix for the system $\dot{x} = Ax$ with initial state x (0) is
 - (a) $(SI A)^{-1}$ (b) $e^{At}x(0)$ (c) Laplace inverse of $[(SI - A)^{-1}]$ (d) Laplace inverse of $[(SI - A)^{-1}X(0)]$

PART - B (5 x 2 = 10 Marks)

- 11. Write Masons' Gain Formula.
- 12. What are the transient and steady state response of a control system?
- 13. State phase and gain margin.
- 14. Define compensator and list the types of compensators.
- 15. What is Observability?

PART - C (5 x
$$16 = 80$$
 Marks)

16. (a) Obtain the closed loop transfer function C(S) / R(S) by using Mason's Gain Formula. (16)

(b) (i) Obtain the closed loop transfer function C(s)/R(s) of the system whose block diagram is shown in figure. (16)

17. (a) A positional control system with velocity feedback $G(s) = \frac{16}{5(5+0.8)}$, H(s)=Ks+1. What is the response C(t) to the unit step input .Given that damping ratio = 0.5. Also calculate rise time, Peak time, Maximum overshoot and settling time. (16)

Or

- (b) Sketch the Root Locus of the control system whose forward path transfer function is $G(s) = \frac{K}{s(s+2)(s+5)}.$ (16)
- 18. (a) Plot the Bode diagram for the following transfer function and obtain the gain and phase cross over frequencies. G(S) = 10/S (1+0.4S) (1+0.1S). (16)

Or

(b) Derive the expression for constant M and N circles. Show that their loci are circles. (16)

19. (a) Design a lead compensator for a unity feedback system with $G(s) = \frac{4}{s(s+2)}$, so that the static velocity error constant Kv is 20 sec⁻¹, the phase margin is at least 50° and the gain margin is at least 10 dB. (16)

Or

- (b) The open loop transfer function of an uncompensated system is $G(s) = \frac{K}{S(S+4)(S+80)}$ Design a phase lag compensator to get a Phase margin of 33° and velocity error of $K_v = 30 \text{ sec}^{-1}$. (16)
- 20. (a) Evaluate controllability and observability of the following state models.

(16)

a)
$$A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & -1 \end{bmatrix}$
b) $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 5 \end{bmatrix}$
c) $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & -4 \end{bmatrix}$, $B = \begin{bmatrix} 40 \\ 10 \\ 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

Or

(b) The state space representation of a system is given by.

$$\begin{pmatrix} \dot{x1} \\ \dot{x2} \\ \dot{x3} \end{pmatrix} = \begin{pmatrix} -2 & 1 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{pmatrix} \begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u$$
$$Y = (0 \ 1 \ 0) \begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix} \text{ obtain the transfer function.}$$
(16)