4	-	7
l		,

Reg. No. :					

Question Paper Code: 53402

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Third Semester

		Electronics and Com	imunication Engineeri	ng		
	15UI	EC302 - DIGITAL EI	LECTRONICS AND I	DESIGN		
		(Regula	ation 2015)			
Dur	ation: Three hours			Maximum: 1	00 Marks	
		Answer A	LL Questions			
		PART A - (S	$5 \times 1 = 5 \text{ Marks})$			
1.	1. In the eight input possibilities of a 3 input NOR gate, how many of those CO1-possibilities will effect in HIGH output?					
	(a) 1	(b) 2	(c) 4	(d) 8		
2.	A full adder can be	constructed out of			CO2- R	
	(a) Two half adders		(b) Two half adde	(b) Two half adders and a OR gate		
	(c) Two half adders	and a NOT gate	(d) Two half adde	(d) Two half adders and a AND gate		
3.	The number of state	s a ring counter with	n 5 flip flops will have is CO3			
	(a) 5	(b)10	(c) 32	(d) None of th	e above	
4.	In Moore models, or	utput is function of or	nly		CO4- R	
	(a) Present state	(b) Input state	(c) Next state	(d) Both (A) a	ind (B)	
5.	Transistor-transistor	r logic (TTL) is a clas	s of digital circuits bu	ilt from	CO5- R	
	(a) JFET		(b) Resistors			
	(c) Bipolar Junction Transistors		(d) Bipolar Juncti	on Transistors and	Resistors	
		PART - B (:	5 x 3= 15Marks)			
6.	State the drawbacks	of K-map method.			CO1- R	
7.	Compare decoder ar	nd demultiplexer.			CO2- R	
8.	Differentiate flip-flo	on from latches			CO3- R	

9.	Defi	ine hazards in asynchronous sequential circuits.	C	O4- R				
10.		nt is the difference between programmable array logic (PAI grammable logic array (PLA)? PART – C (5 x 16= 80 Marks)	L) and C	O5- R				
11.	(a)	Simplify the following Boolean function $f(W, X,Y,Z)=\sum m(2,6,8,9,10,11,14,15)$ using Quine-McClukey tabular method.	CO1- App	(16)				
	(b)	Find a minimal sum of products representation for $F(A,B,C,D) = \sum_{m}(1,3,7,11,15) + \sum_{m}d(0,2,5)$ using karnaugh method. Draw the circuit of the minimal expression using only NAND gates.	CO1- App	(16)				
12.	(a)	Design a 4 bit magnitude comparator and draw its logic diagram. Or	CO2- App	(16)				
	(b)	Explain the design of BCD adder.	CO2- App	(16)				
13.	(a)	(i) Draw the logic diagram of a 4-bit universal shift register and explain its operation.	CO3- U	(8)				
		(ii) Explain the working of a Master - slave J-K flip-flop with a neat logic Diagram.	CO3- U	(8)				
	Or							
	(b)	Design and explain the working of synchronous MOD-6 counter.	CO3- U	(16)				
14.	(a)	Design a sequence detector that produces an output '1' whenever the non-overlapping sequence 1011 is detected.	CO4- U	(16)				
		Or						
	(b)	Explain in detail about problems in asynchronous sequential circuits.	CO4- U	(16)				
15.	(a)	Implement the following two Boolean functions with a programmable logic array (PLA) $F_1(A,B,C) = \sum m(\ 0,1,3,4)$ $F_2(A,B,C) = \sum m(\ 1,2,3,4,5)$	CO5- U	(16)				
	Or							
	(b)	(i) Discuss about FPGA in detail.	CO5- U	(8)				
	` /	(ii) Explain the operation of a TTL 3-input NAND gate with a neat circuit diagram.		(8)				