A
\mathbf{A}
1 <u>1</u>

pass filter

(a) h (n) symmetric and 'M' odd

(c) h (n) anti-symmetric and 'M' odd

Reg. No. :					

(b) h (n) symmetric and 'M' even

(d) h (n) anti-symmetric and 'M' even

Question Paper Code: 56421

B.E./B.Tech. DEGREE EXAMINATION, NOV 2019

Sixth Semester

Electrical and Electronics Engineering

15UEC621 - SIGNAL PROCESSING

(Common to Electronics and Instrumentation Engineering)

	(8	67			
		(Regulation	on 2015)				
Duration: Three hours			Maximum: 100 Marks				
		Answer ALI	L Questions				
		PART A - (10 x	1 = 10 Marks				
1.	For a system to be c	ausal		CO1- R			
	(a) $h(n) \neq 0$ for $n < 0$	(b) $h(n) = 0$ for $n < 0$	(c) $h(n) = 0$ for $n \ge 0$	$(d)\sum_{k=-\infty}^{\infty} h(n) <\infty$			
2.	Sampling theorem:			CO1- R			
	(a) fm <fs< td=""><td>(b) fs>fm</td><td>(c) $fs \ge 2fm$</td><td>(d) $fs=2fm$</td></fs<>	(b) fs>fm	(c) $fs \ge 2fm$	(d) $fs=2fm$			
3.	For what kind of signals one sided z-transform is unique?						
	(a) All signals	(b) Anti-causal signal	(c) Causal signal	(d) None of the above			
4.	The z transform is a	,		CO2- R			
	(a) finite series		(b) infinite power serie	es			
	(c) geometric series		(d) both a and c				
5.	The direct evaluation DFT requires complex multiplications						
	(a) N(N-1)	(b) N ²	(c) N(N+1)	(d) $\frac{N (N-1)}{2}$			
6.	For a decimation-in-time FFT algorithm, which of the following is true?						
	(a) Both input and o	output are in order	(b) Both input and output are shuffled				
	(c) Input is shuffled	and output is in order	(d) Input is in order and output is shuffled				
7.	Which of the follow	ving is not suitable eithe	r as low pass filter or a H	High CO4- R			

8.	In which window sequence, the width of the main-lobe can be adjusted by varying the length N of the window?							
	(a)]	Hamming	(b) Hanning	(c) Bartlett	(d) Kaiser			
9.	Size	e of the ALU	the ALU of TMS320C54X DSP processor					
	(a) 3	8-bit	(b)16-bit	(c) 40-bit	(d) 32-bit	(d) 32-bit		
10.	The	addressing m	ode which makes use o	of in-direction pointers is	CO5- R			
	(a)]	Indirect addres	ssing mode	(b) 5 Index addressing me	ode and 7			
	(c) Relative addressing mode (d) Offset addressing mode							
			PART – B	(5 x 2= 10 Marks)				
11.	Stat	e sampling the	eorem.		CO	l-R		
12.	Det	ermine the dis	crete time Fourier tran	sform of the sequence	CO2	2- R		
	x (n	$() = \{1,-1,1,-1\}$	}.					
13.	If D	$FT [x (n)] = \Sigma$	X(k) find DFT $[x*(n)]$.		CO3	CO3- R		
14.	. Give the equation for the order N of Chebyshev filter.					CO4- R		
15.	Mei	ntion the impo	CO5- R					
			PART – C	C (5 x 16= 80 Marks)				
16.	(a)		the following systems, nt or time invariant	determine whether the system	CO1- App	(16)		
		(i) $y(n) = x^{2}$ (ii) (ii) $y(n)$						
		(iii) $y(n) = x$	$(n) + n \times (n+1)$					
		(iv) y(n) = co	os $[x(n)]$					
			Or					
	(b)	(i) Find whe		$\cos (10 t+1) - \sin(4t-1) is$	CO1- App	(8)		
		(ii) Determin x(n)=sin		s are energy or power signals	CO1- App	(8)		
17.	(a)	(i) State and	prove the convolution	theorem of Z – transform.	CO2- App	(8)		
		(ii) Find the ROC: z	inverse Z – transform o	of $X(z) = \frac{z^3 + z^2}{(z-1)(z-3)}$	CO2- App	(8)		

Or

	(b)	(i) Determine the Z transform and ROC of the sequence	CO2- App	(8)
		$x(n) = an cos((\omega n)u(n).$		
		(ii) Evaluate the system function of the discrete time system described by the difference equation. $y(n) = 0.5y(n-1) + x(n)$.	CO2- App	(8)
18.	(a)	Compute DFT using DIT-FFT algorithm	CO3- App	(16)
		$X(k) = \{0.5, 0.5, 0.5, 0.5, 1, 1, -1, -1\}$		
		Or		
	(b)	Compute 8-point DFT of the following sequence using DIF algorithm.	CO3- App	(16)
		x(n) = 1 for 0 < n < 7		
		=0 for otherwise		
19.	(a)	Design a second order digital low pass Butterworth filter with a cut-off frequency 3.4 KHz at a sampling rate of 8 KHz using bilinear transformation.	CO4- App	(16)
		Or		
	(b)	Design a digital FIR band pass filter with lower cut off frequency 2000Hz and upper cut off frequency 3200Hz using Hamming window of length N=7.Sampling rate is 10000Hz.	CO4- App	(16)
20.	(a)	Explain various addressing modes of a digital signal processor.	CO5- U	(16)
		\bigcap r		

(b) Draw the functional diagram of a digital signal processor and $\,$ CO5- $\,$ U

explain.

(16)