Reg. No.:

Question Paper Code: 46403

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Sixth Semester

Electronics and Communication Engineering

	14UEC	C603 - ANTENNA	AND WAVE PROPAC	GATION	
		(Regula	ation 2014)		
Dι	aration: Three hours			Maximum: 100 Mark	S
		Answer A	ALL Questions		
		PART A - (10	$0 \times 1 = 10 \text{ Marks}$		
1.	Effective aperture i	s always th	nan Physical aperture.		
	(a) higher	(b) O	(c) Elliptical	(d) Circular	
2.		antenna with a direct	_	mW of power is fed to it	t,
	(a) 4mW	(b) 1mW	(c) 7mW	(d) 1/4mW	
3.	A dipole antenna of efficiency of the ant	_	n equivalent total loss	resistance of 1.5Ω . Th	e
	(a) 0.89159%	(b) 8.9159%	(c) 89.159%	(d) 891.59%	
4.	The array that does	not produce side lobe	es excepting principal l	lobe is	
	(a) Broad side	array	(b) End fire array		
	(c) Yagi-Uda a	rray	(d) Binomial arra	у	
5.	Corrugations in con	ical horn antenna is p	provided to improve		
	(a) Directivity		(b) Impedance m	atching	

(d) Bandwidth

(c) Beam symmetry

6.	The relation between slot and dipole impedances is				
	(a) Z_SZ_d	$=Zi^2/4$	(b) $Z_S Z_d = Zi^2/2$		
	(c) $Z_S Z_{d}$	$=Zd^2/4$	(d) $Z_S Z_d = Z d^2 / 2$		
7.	A 13 eleme dB (approx.).	nt Yagi-uda antenna a	array produces a maximu	ım gain of	
	(a) 5	(b) 9	(c) 14	(d) 3	
8.	For a Hertz di	pole antenna, the Half P	ore Beam Width (HPBW) i	n the E-Plane is	
9.	(a) 360°	(b) 180°	(c) 90° -layer in ionosphere is 4 x	(d) 45°	
·		ne critical frequency of E	-	100 010011 01110, 01110, 011011	
	(a) 4 MH		·	(d) 25 MHz	
10.	is:	not a type of fading.			
	(a) Polar	ization (b) Skip	(c) Interence	(d) None of these	
		PART - B	$(5 \times 2 = 10 \text{ Marks})$		
11.	Distinguish fa	ar field and near field reg	ion of an antenna.		
12.	List out the ac	dvantages and disadvanta	ages of loop antenna.		
13.	Define a Hert	zian dipole.			
14.	Mention the r	•	th 'l' and spacing 'S' of adj	acent elements of log	
15.	What are the	factors that affect the pro	ppagation of radio waves?		
		PART - C	$(5 \times 16 = 80 \text{ Marks})$		
16.	(a) Discuss in between	•	tures of an antenna and exp	lain the relation (16)	
			Or		

	(b)	(i) In a microwave link, two identical antennas operating at 10GHZ are used with power gain of 40db. If the transmitted power is 1 watt, find the received power if the range of the link is 30km. (8)
		(ii) A thin dipole antenna is $\lambda/2$, if it's $R_{L=}$ 1.5 Ω find R_r and its efficiency. (8)
17.		Derive the fields radiated from a half wave dipole antenna. Also find the power adiated from the same. (16)
		Or
	(b)	Elucidate linear array of 4 isotropic elements spaced λ /2 apart and with equal currents fed out phase, plot the radiation pattern in polar coordinates. (16)
18.	(a)	Design a rectangular micro strip patch with dimensions W and L over a single substrate, whose center frequency is 10 GHz. The dielectric constant of the substrates is 10.2 and the height of the substrate is 0.127 cm. Determine the physical dimensions W and L of the patch taking into account fringing fields. (16)
		Or
	(b)	Express the importance of Babinet's principle on complementary antennas in detail. (16)
19.	(a)	Explain the radiation mechanism of a 2 element Yagi-Uda Antenna. Derive its gain expression. (16)
		Or
	(b)	(i) Design a log periodic dipole array with 7 db gain and a 4 to 1 bandwidth. Given from "Carrel" curve that 7 db gain corresponds to α =15°, K=1.2 and S/ λ =0.15. (8)
		(ii) Elaborate Gain and Directivity measurements in antenna. (8)

20. (a) At a 150 km height in the ionosphere, the electron density at night is about		
2×10^{12} m ⁻³ and the signal MUF is 1.5 times the critical frequency for a transmission		
distance of 600km. Compute the following: (i) Critical frequency (ii) Relative		
dielectric constant (iii) Phase constant (iv) Wave impedance (v) Wave velocity.		
(16)		
Or		
(b) Explain the various layers of Ionosphere (16)		