Dog No.					
Reg. No.:					

Question Paper Code: 47402

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Seventh Semester

Electronics and Communication Engineering

14UEC702-OPTICAL COMMUNICATION AND NETWORKS

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

4	O 11	•	1	•
1	Snell	Ś	law	15
			14 11	10

(a) $n_1 \sin \varphi_1 = n_2 \sin \varphi_2$

(b) $n_1 \cos \varphi_1 = n_2 \cos \varphi_2$

(c) $n_1 \tan \varphi_1 = n_2 \tan \varphi_2$

- (d) $n_1 \cot \varphi_1 = n_2 \cot \varphi_2$
- 2. The cutoff normalized frequency of single mode fiber is
 - (a) $V_{C} = 2.504$

(b) $V_{C} = 2.045$

(c) $V_{C} = 2.450$

(d) $V_{C} = 2.405$

- 3. Scattering loss occurs due to
 - (a) Microscopic variations

(b) Compositional fluctuations

(c) Semi-permanent joint

(d) All of the above

- 4. Fiber splicing is a type of
 - (a) Temporary joint

(b) Permanent joint

(c) Semi-permanent joint

(d) None of the above

(b) Medium distance communication			
(d) All of the above			
(b) Repeat through avalanche photo diode			
e (d) Reduce through avalanche photo diode			
h (c) Low gain (d) Low dynamic range			
I fiber attenuation per unit length is			
(b) Cut-back method			
(d) Frequency domain method			
destination through a series of intermediate			
(c) Switching (d) Network a carrier induced phase modulation is called			
(b) chirp effect			
(d) cross phase effect			
2 = 10 Marks)			
r large enough to be considered by ray theory and cladding refractive index of 1.47. Find face.			
fiber refractive index profile?			

PART - C (5 x 16 = 80 Marks)

theory analysis has a core refractive index of 1.50 and a cladding refractive 1.47. Determine a) the critical angle at the core –cladding interface b) the number aperture of the fiber c) the acceptance angle in air for the fiber.	index of
. (ii) Give a brief note on the various modes of a planar guide.	(8)
Or	
(b) Draw and explain the elements of optical communication systems?	(16)
 17. (a) (i) When the mean optical power launched into an 8km length of fiber is 120 mean optical power at the fiber output is 3μW.Determine (a) The overall signal attenuation or loss in decibels through the fiber assument there are no common connectors or splices (b) The signal attenuation per kilometer for the fiber (c) The overall signal attenuation for a 10km article link using the same for the fiber 	(8) aming
(c) The overall signal attenuation for a 10km optical link using the same f splices at 1km intervals each giving attenuation of 1dB(d) The numerical aperture input/output power ratio	iber with
(ii) write short notes on fiber bend loss	(8)
Or	
(b) Describe about fiber connectors, splices, and couplers .	(16)
18. (a) Explain the structure of surface emitting and edge emitting LEDs. Or	(16)
(b) Discuss about the probability of error of fiber optic receiver.	(16)
19. (a) What is the role of preamplifier in optical receiver? Explain the different type preamplifiers. Or	es of (16)
(b) Explain how attenuation and dispersion measurements could be done	(16)

20. (a) Explain in detail about the wavelength routed networks. (16)
Or

(b) Discuss the performance improvement of WDM and EDFA systems (16)