C		Reg. No. :			
		Question Pa	per Code: 554	01	
]	B.E. / B.Tech. DEGREE	EXAMINATION	, NOV 2019	
		Fifth	Semester		
		Electronics and Cor	nmunication Engin	neering	
		15UEC501 - DIGITA	L SIGNAL PROC	CESSING	
		(Regul	lation 2015)		
Dur	ation: Three hour		ALL Questions	Maximum	: 100 Marks
		PART A - ($5 \times 1 = 5 \text{ Marks}$		
1.	If $x(n)$ and $X(k)$ are an N-point DFT pair, then $X(k+N) = ?$			CO1- R	
	(a) X(-k)	(b) -X(-k)	(c) X(k)	(d) None of the	e above
2.		lesign by the Bilinear is a mapping from	Transformation	the Bilinear	CO2- R
	(a) Z-plane to S-	-plane	(b) S-plane to Z-plane		
	(c) S-plane to J-plane		(d) J-plane to Z-plane		
3. How many memory locations are used for storage of the output of a sequence of length M in direct form realization?		output point	CO3- R		
	(a) M+1	(b) M	(c) M-1	(d) None of ab	ove
4.	What is the model that has been adopted for characterizing round of CO4- R errors in multiplication?				
	(a) Multiplicative white noise model		(b) Subtractive white noise model		el
	(c) Additive white noise model		(d) None of the mentioned		
5.	TMS320C5x processor is a		bit processor		CO5- R
	(a) 8 bit	(b) 16 bit	(c) 32 bit		None of above

PART – B	$(5 \times 3 = 1)$	15Marks)
----------	--------------------	----------

6.	Compare and contrast DFT and DTFT.			CO1-U			
7.	Differentiate Butterworth and Chebyshev filter.			CO2-U			
8.	Write the steps involved in FIR filter design.			CO3-U			
9.	Define product round off error			CO4-U			
10.	. List any two applications of TMS320C5x processor			CO5-U			
		PART – C (5 x 16= 80Marks)					
11.	(a)	Derive and draw the radix -2 DIT algorithms for FFT of 8 points	CO1- App	(16)			
	Or						
	(b)	Compute the DFT for the sequence $x(n)=\{1, 2, 0, 0, 0, 2, 1, 1\}$ using radix -2 DIF FFT.	CO1- App	(16)			
12.	(a)	Obtain the cascade and parallel form realizations for the	CO2- App	(16)			

y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)

Or

(b) Design a digital Chebyshev low pass filter satisfying the CO2- App (16) following specifications

 $0.707 \le |H(e^{jw})| \le 1, 0 \le \omega \le 0.2\pi$

 $|H(e^{jw})| \le 0.1, 0.5 \pi \le \omega \le \pi \text{ with } T=1 \text{ sec}$

using bilinear transformation.

following system

13. (a) Design a high pass filter with Hamming window with a cut-off CO3- App (16) frequency of 1.2 radians/sec and N=9.

Or

(b) Design and implement linear phase FIR filter of length N =15 CO3- App (16) which has following unit sample sequence H(k) = 1; for k = 0, 1, 2, 3; H(k) for k = 4, 5, 6, 7

14.	(a)	Illustrate limit cycle oscillation. Explain with examples.	CO4- U	(16)
		Or		
	(b)	Explain briefly	CO4- U	(8)
		(i) Effects of coefficient quantization in filter design.		
		(ii) Effects of product round off error in filter design.	CO4- U	(8)
15.	(a)	Explain the architecture of TMS320C5x Digital Signal Processor.	CO5- U	(16)
		Or		
	(b)	Explain briefly	CO5- U	(8)
		(i) Addressing modes of TMS320C5x Processor.		
		(ii) Instruction pipeline	CO5- U	(8)