_					
Reg. No.:					

Question Paper Code: 45423

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Fifth Semester

Electrical and Electronics Engineering

14UEC523 - COMMUNICATION ENGINEERING

(Common to Electronics and Instrumentation Engineering and Instrumentation and Control Engineering)

		(Reg	gulation 2014)					
Dι	uration: Three hours			Maximum: 100 Marks				
		Answe	r ALL Questions					
		PART A -	(10 x 1 = 10 Marks)					
1.	The	signal can be	elp of synchronous detector.					
	(a) SSB	(b) DSB-SC	(c) SSB-SC	(d) none of these				
2.	VSB modulation is							
	(a) it reduces the	ne bandwidth requi	rement to half					
(b) it avoids phase distortion at low frequencies								
	(c) it results in	better reception						
	(d) none of these							
3.	Frequency shift key	ying is used mostly	' in					
	(a) Satellite Co	mmunication	(b) Telephony					
	(c) Telegraphy		(d) Radio Transı	mission				

(c) less than

(d) none of these

4. The bandwidth of BFSK is _____ that of the bandwidth of BPSK.

(b) twice

(a) thrice

5. The information rate R is less than or equal to a rate C is called the								
	(a) Channel capacity(c) Probability	y	(b) Coo (d) Info	ling ormation rate				
6.	Linear codes are used for	or						
	(a) Forward error de (c) Backward error o		` '	ekward error detection ward error correction				
7.	The most important app	lication of the s	pread spe	ectrum technique is				
	(a) time division mu(c) both (a) and (b)	ltiplexing	(b) code division multiplexing(d) none of these					
8.	The	spread spectrum	n is a FM	or FSK technique.				
	(a) Frequency Hopp(c) Transistors	ing	(b) Direct Sequence(d) Semiconductor Lasers					
9.	is use	ed as a figure of	f merit fo	r the fiber.				
	(a) Aperture angle(c) Numerical Apert	ture	(b) Refractive Index(d) None of these					
10.	Detector used in optical	fiber is						
	(a) Photo diodes(c) Transistors			(b) LEDs(d) Semiconductor Lasers				
7.	The most important app	lication of the s	pread spe	ectrum technique is				
	(a) time division mu(c) both (a) and (b)	lltiplexing		(b) code division multiplexing(d) none of these				
8.	The baud rate is defined	as						
	(a) The no of samples per second(c) Both (a) and (b)			(b) The no. of revolutions per second(d) None of these				
9.	Example of power limite	ed communicati	on chann	nel is				
	(a) co-axial cable	(b) cellular cha	nnel	(c) satellite	(d) PSTN			
10.	is a fiber specification, most important to the designer point of view							
	(a) Bandwidth	(b) Attenuation	1	(c) Numerical aperture	(d) None			

PART - B (5 x
$$2 = 10 \text{ Marks}$$
)

- 11. State the Carson's rule.
- 12. Define bit rate and baud rate.
- 13. Compare NRZ and RZ.
- 14. List the different types of handoffs.
- 15. Define numerical aperture.

PART - C (5 x
$$16 = 80 \text{ Marks}$$
)

16. (a) Explain the operation of Super heterodyne receiver and compare its performance with Tuned Radio frequency receiver. (16)

Or

- (b) Using suitable Mathematical analysis show that FM modulation produces infinite sidebands. Also deduce an expression for the frequency modulated output and its frequency spectrum. (16)
- 17. (a) With a neat block diagram explain the PCM modulation and demodulation. Derive the processing gain of the DPCM. (16)

Or

- (b) Explain QPSK transmitter and receiver with block diagram. Also draw the constellation and phasor diagram of QPSK. (16)
- 18. (a) A database management system has following alphabet with probability of occurrence as shown below. Generate the Huffman code with minimum code variance. Determine the code variance and code efficiency. (16)

Symbol	S_0	S_1	S_2	S_3	S_4	S_5	S_6
Probability	0.12	0.062	0.2	0.062	0.12	0.12	0.2
	5	5	5	5	5	5	5

Or

(b) Briefly discuss on various error control codes and explain in detail with one example for convolution code. (16)

19.	(a)	(i) Compare the performance of CDMA with FDMA and TDMA.	(8)
		(ii) Draw and explain the block diagram of transmitter and receiver of CDMA.	(8)
		Or	
	(b)	With neat block diagram explain the frequency division multiple access technic Discuss its application in communication.	que. (16)
20.	(a)	(i) Illustrate the uplink and downlink model of satellite communication system.	(8)
		(ii) Explain the concept of Optical sources and detectors.	(8)
		Or	
	(b)	Explain Optical Fiber Communication link with a neat block diagram. List advantages and disadvantages of Optical Fiber Communication.	the (16)