Reg. No.:					

Question Paper Code: 45404

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Fifth Semester

Electronics and Communication Engineering

14UEC504 - TRANSMISSION LINES AND WAVEGUIDES

(Regulation 2014)

(Smith chart may be permitted)

D	ouration: Three hours			Maximum: 100 Mark	ζS		
		Answer	ALL Questions				
		PART A - ($10 \times 1 = 10 \text{ Marks}$				
1. Which stands for <i>dB</i> relative level?							
	(a) dBrn	(b) <i>dBa</i>	(c) dBr	(d) dBx			
2.	One decibel equals to						
	(a) 5.356N	(b) 8.686 <i>l</i>	(c) 7.635	N (d) None of these	;		
3.	3. A transmission line is terminated in a load equal to its characteristic impedance. The reflection coefficient is						
	(a) plus one	(b) minus	one (c) zero	(d) infinity			
4.	Aband is the rawithout being attenua	•	ies or wavelengths	that can pass through a filte	er		
	(a) Pass	(b)Band	(c) Base	(d) Low			
5.	Reflection Coefficien	t K=Voltag	e at load /Incident v	oltage at the load.			
	(a) Reflected	(b) Incident	(c) Reflection	(d) Inflection			

6.		vave travels along the led a wavelength.	the line while	e the phase angle is	changing throu	gh		
	(a) 1	(b) 2	(c) 2.5	(d) 1.5				
7.	Assumptions for to conductance G is	he analysis of the	performance	of the radio frequer	ncy Line, leaka	ge		
	(a) 0.5	(b) 0	(c) 2.5	(d) 1.5				
8.	Dominant mode m	eans						
	(a) highest cut(c) guide wave	off frequency length		(b) lowest cut-off wavelength(d) lowest cut-off frequency				
9.	Dominant mode in	circular cavity reso	onator is					
	(a) TM_{010}	(b) TM ₁₁	1	(c) TM_{101}	(d) TM $_{100}$			
10.	Principal mode is							
	(a) TE mode	(b) TM r	node	(c) TEM mode	(d) None			
		PART - B	$(5 \times 2 = 10)$	Marks)				
11.	Define Characteris	tic impedance.						
12.	List the advantages	s of double stub ma	tching over s	ingle stub matching.				
13.	Give the dominant	mode for TE and T	TM waves.					
14.	Define phase veloc	eity.						
15.	What are the root v	values for the TE m	odes?					
		PART - C	$(5 \times 16 = 80)$	Marks)				
16.	(a) (i) Design a T	-type prototype bar	nd pass filter		(1	0)		
		t K T-section high pedance is $600 \ \Omega$. I	-	as a cut-off frequence value of L.	-	he 6)		
			Or					
	(b) (i) Derive the	current and voltage	e ratio as exp	onentials propagation	n constant. (8)		

		(ii) Design m derived T type low pass filter to work into load of 500 Ω with cut frequency at 4 kHz and peak attenuation at 4.15 kHz.	-off (8)
17.	(a)	A transmission line has the following primary constants measured per $R=10.15~\Omega$, $L=3.93~mH$, $C=0.00797\mu F$, $G=0.29\mu mho$. Determine Z_0 propagation constant at a frequency of $796H_z$. Also calculate at the sending enthe line is terminated in its characteristic impedance.	and
		Or	
	(b)	Design a single stub match for a load of 150 + j225 ohms for a 75 ohms at 500 MHz using smith chart.	line (16)
18.	(a)	Derive the expression for the field strength for TM waves between Parallel plapropagating in Z direction.	ates (16)
		Or	
	(b)	Explain about transverse electromagnetic waves between a pair of perfect conducting planes.	ctly 16)
19.	(a)	Derive the field component of the wave propagating between parallel planes. (16)
		Or	
	(b)	Explain about the excitation modes in rectangular wave guide. (16)
20.	(a)	Obtain the electromagnetic field equations for TE waves in rectangular waveguid	des. (16)
		Or	

3

(b) What is meant by cavity resonator? Derive the expression for the resonant frequency

of the rectangular cavity resonator.

(16)