Reg. No.:					

Question Paper Code: 53504

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Third Semester

Elec	etronics and Instrumen	ntation Engineering	
15	5UEI304 - DIGITAL	ELECTRONICS	
	(Regulation	2015)	
Duration: Three hours		Maxi	mum: 100 Marks
	Answer ALL (Questions	
	PART A - (10 x 1	= 10 Marks)	
1. Which of the following	is minimum error cod	le?	
(a) Octal code(c) Binary code		(b) Grey code(d) Excess 3 code	
2. Which of the following	expressions is in the s	sum-of-products (SOP) for	m?
(a) $AB + CD$	(b) <i>AB(CD)</i>	(c) (A + B)(C + D)	(d) $(A)B(CD)$
3. A NAND gate is called a	a universal logic elem	nent because	
(c) all the minization	on can be realized by	icable for optimum NANI	O gate realization

- (d) many digital computers use NAND gates
- 4. How many bits are required to store one BCD digit?
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- 5. For which of the following flip-flops, the output is clearly defined for all combinations of two inputs
 - (a) Q type flip-flop
- (b) R-S flip-lop
- (c) J-K flip-lop
- (d) D flip-flop

6.	How many flip flo	ops are required to co	onstruct a decade co	ounter?				
	(a) 10	(b) 8	(c) 5	(d) 4				
7.	Table that is not a	able that is not a part of asynchronous analysis procedure.						
	(a) transition(c) flow table	table	` '	(b) state table(d) excitation table				
8.	Race in which sta	ble state depends on	order is called					
	(a) critical rac(c) non critica		` '	(b) identical race(d) defined race				
9.	Which of the follounit	owing memories uses	s one transistor and	one capacitor a	as basic memory			
	(a) SRAM	(b) DRA	M (c) Both	n (a) and (b)	(d) none			
10.	In a read-only me	mory information ca	n be stored					
	(b) by the use (c) by the use	of fabrication r only once during it r a number of times he above ways dependent PART - B		•				
11.	Define De-morgan	n's theorem.						
12.	Draw $Y = A + BC$	D'using NAND onl	y.					
13.	Write down the ch	naracteristic equation	for JK flip flop.					
14.	Compare static an	d dynamic hazards.						
15.	What is programn	nable logic array? Ho	ow it differs from R	OM?				
		PART - C ($(5 \times 16 = 80 \text{ Marks})$)				
16.		given switching function $\Sigma(0, 5, 7, 8, 9, 1)$	<u> </u>	Mcclusky metho	od. (16)			
			Or					
	(b) Simplify the f	Collowing expression	using K-map					
	(i) $Y = \sum$	Σ_m (7, 9, 10, 11, 12,	13, 14, 15)					
	(ii) $Y = n$	$n_1 + m_5 + m_{10} + m_{11}$	$+ m_{12} + m_{13} + m_{15}$		(16)			

17. ((a)	a) Design a BCD adder and explain its working with necessary logic diagram.				
		Or				
(b)		(i) Give the CMOS logic circuit for NOR gate and explain its operation.	(8)			
		(ii) Explain the TTL circuit output connections.	(8)			
18. (a) D		(a) Design and explain a ring counters with suitable example.	(16)			
		Or				
((b)	Explain the operation of universal shift register with logic diagram.	(16)			
19. ((a)	(i) Define races and explain its types.	(8)			
		(ii) Explain how hazards that occur in asynchronous circuits	(8)			
		Or				
((b)	What are hazards? When does the hazard occur in combinational circuits an	•			
		an example? Name the types of hazards and how they are avoided.	(16)			
20. ((a)	Explain with neat diagrams a RAM architecture.	(16)			
		Or				
((b)	(i) Draw the block diagram of a PLA and explain its IC 7575-PLA.	(16)			