| Reg. No.: |  |  |  |  |  |
|-----------|--|--|--|--|--|

# **Question Paper Code: 44501**

#### B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

#### Fourth Semester

Electronics and Instrumentation Engineering

### 14UEI401 - CONTROL ENGINEERING

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

#### **Answer ALL Questions**

PART A - 
$$(10 \times 1 = 10 \text{ Marks})$$

- 1. Which of the following system is not an example of closed loop system?
  - (a) Traffic light controller
  - (b) Action of human being in walking
  - (c) Home heating system
  - (d) DC motor speed control
- 2. In force-voltage analogy, spring constant is analogous to
  - (a) Voltage

(b) Reciprocal of capacitance

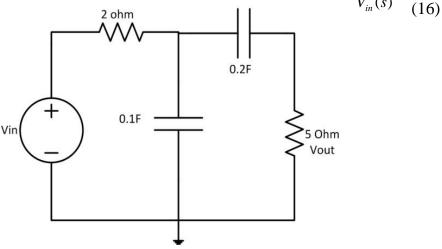
(c) Capacitance

(d) Charge

- 3. State the order and type number of the system for the given open loop  $G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$  transfer function
  - (a) 0, 3
- (b) 1, 3

(c) 3, 2

(d) 3, 1


- 4. Which of the following characteristics does it have, the given closed loop transfer function  $\frac{C(s)}{R(s)} = \frac{121}{s^2 + 132s + 121}$  of a system
  - (a) Over damped system and setting time 1.1s
  - (b) Under damped system and setting time 0.6s
  - (c) Critically damped system and setting time 0.8s
  - (d) Under damped system and setting time 0.707s

| 5.  | Phase margin of a system<br>(a) Frequency respond<br>(c) Relative stability                 | nse                           | ch of the following? (b) Absolute stability (d) Time response |                         |                           |             |  |  |
|-----|---------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|-------------------------|---------------------------|-------------|--|--|
| 6.  | At the gain cross over margin is                                                            | frequency,                    | $\omega$ =5 rad/s,                                            | $\angle G(j\omega)H(j$  | $\omega) = -170^{\circ}.$ | The phase   |  |  |
|     | (a) $-10^{\circ}$                                                                           | (b) 10°                       | (c)                                                           | -170°                   | (d) 1                     | 170°        |  |  |
| 7.  | If the poles of a system lie on the imaginary axis, the system will be                      |                               |                                                               |                         |                           |             |  |  |
|     | (a) stable                                                                                  |                               | unstable                                                      |                         |                           |             |  |  |
|     | (c) marginally stable                                                                       | (d)                           | ) Conditionally stable                                        |                         |                           |             |  |  |
| 8.  | Normal Routh array indicates                                                                |                               |                                                               |                         |                           |             |  |  |
|     | (a) non zero elemen                                                                         | ts in the first               | (b) row of all zeros                                          |                         |                           |             |  |  |
|     | (c) first column eler                                                                       | ment of the ro                | w is zero                                                     | (d) row of all          | lones                     |             |  |  |
| 9.  | Number of in a state diagram of discrete time system is equal to number of state variables. |                               |                                                               |                         |                           |             |  |  |
|     | (a) integrators                                                                             |                               |                                                               | (b) state varia         | ables                     |             |  |  |
|     | (c) phase variables                                                                         |                               |                                                               | (d) unit delay          | ý                         |             |  |  |
| 10. | The state variable approach is applicable to                                                |                               |                                                               |                         |                           |             |  |  |
|     | (a) Only linear time in-variant systems                                                     |                               |                                                               |                         |                           |             |  |  |
|     | (b) Linear time in-variant as well as time varying systems                                  |                               |                                                               |                         |                           |             |  |  |
|     | (c) Linear as well as non linear systems                                                    |                               |                                                               |                         |                           |             |  |  |
|     | (d) All type of syste                                                                       | ems                           |                                                               |                         |                           |             |  |  |
|     |                                                                                             | PART - B                      | $(5 \times 2 = 10)$                                           | Marks)                  |                           |             |  |  |
| 11. | Define transfer function                                                                    |                               |                                                               |                         |                           |             |  |  |
| 12. | List the test signals used                                                                  | I to find the ti              | me response                                                   | e in control sy         | stems.                    |             |  |  |
| 13. | Show the polar plot of o                                                                    | $G(s) = \frac{1}{s^2(1+s)^2}$ | $\frac{1}{T_1)(1+sT_2)(1}$                                    | $\frac{1}{(sT_3)}$ .14. | The characte              | eristics    |  |  |
|     | equation of a system is a system.                                                           | given by $3s^4$               | $+10s^3+5s^2+$                                                | -2=0. Conclu            | ıde the stabi             | lity of the |  |  |

15. List the properties of state transition matrix.

## PART - C (5 x 16 = 80 Marks)

16. (a) (i) For the electrical circuit in figure-1, Find the transfer function  $\frac{V_{out}(s)}{V_{out}(s)}$ 



Or

(b) Determine the transfer function C(s)/R(s) of the system shown in Figure. 2.

(16)

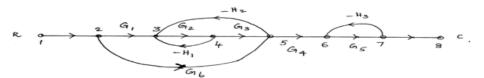



Figure 2

17. (a) Consider a unity feedback system with a closed loop transfer function  $C(s)/R(s) = (Ks+b)/(s^2+as+b)$ . Determine the open loop transfer function G(s). Show that the steady state error with unit ramp input is given by (a-k)/b.

(16)

Or

(b) (i) A certain negative feedback control system has the following forward path transfer function  $G(s) = \frac{K}{s(s+1)}$ . The feedback path has the following transfer function  $H(s) = 1 + K_h(s)$ . Determine the value of K and  $K_h$  so that the maximum overshoot for unit step input is 0.2 and it occurs at time t=1 sec. With these values of K and  $K_h$  determine the rise time and setting time.

(8)

- (ii) The forward path transfer function of a unity feedback type-1, second order system has a pole at -2. The nature of gain K is so adjusted that damping ratio is 0.4. Find the Steady state error when the input is r(t) = 1 + 4t. (8)
- 18. (a) Explain the design procedure involved in the design of lag compensator. (16)

Or

- (b) A unity feedback system has an open loop transfer function  $G(s) = \frac{K}{s(1+2s)}$ . Design a suitable lag compensator so that phase margin is 40° and steady state error for ramp input is less than or equal to 0.2. (16)
- 19. (a) Determine the stability of a system, whose characteristics equation is given by  $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$ . Also find the number of roots lying in the LHS, RHS and imaginary axis of s-plane. (16)

Or

- (b) The open loop transfer function of a closed loop system with unity feedback is  $G(s) = \frac{K}{(s+2)(s+4)(s^2+6s+25)}$ . By applying the Routh criterion, discuss the stability of the closed loop system as a function of K. Determine the values of K which will cause sustained oscillations in the closed loop system and also find the corresponding oscillation frequencies. (16)
- 20. (a) Determine whether the system is completely controllable and observable

$$A = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}.$$
 (16)

**O**r

(b) For a system represented by state equation  $\overset{\bullet}{X}(t) = AX(t)$ . The response is

$$X(t) = \begin{bmatrix} e^{-2t} \\ -2e^{-2t} \end{bmatrix} \text{ when } X(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ and } X(t) = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix} \text{ when } X(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Determine the system matrix A and state transition matrix. (16)