Reg. No.:					

Question Paper Code: 45505

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Fifth Semester

Electronics and Instrumentation Engineering

14UEI505 - ANALYTICAL INSTRUMENTS

(Common to Instrumentation and Control Engineering)

(Regulation 2014)

		(Regulatio	n 2014)	
Du	ration: Three hours			Maximum: 100 Marks
		Answer ALL	Questions	
		PART A - (10 x	1 = 10 Marks)	
1.	The units of an IR spec	trometer on the X-ax	is is	
	(a) meter	(b) centimeter	(c) per meter	(d) per centimeter
2.	Wave number of near i	nfrared spectrometer	is	
	(a) 12500 - 4000	(b) 4000 - 200	(c) 200 - 10	(d) 200 - 20
3.	If the concentration of	solution increases, the	en the absorption	
	(a) remains same	(b) decreases	(c) increases	(d) unpredictable
4.	In gas chromatography is the difference in	, the basis for separat	ion of the component	ts of the volatile material
	(a) partition coeffic	cients	(b) conductivity	Y
(c) molecular weight			(d) molarity	
5.	Which gas has high the	ermal conductivity?		
	(a) Nitrogen		(b) Hydrogen	

(d) Carbon dioxide

(c) Helium

6.	The principal source of volatile organics (Hy	drocarbons) is
	(a) Transportation(c) Stationary fuel combustion	(b) Industrial processes(d) Volcanoes
7.	is an electrode which respond	Is to change in the activity of the analyte ion.
	(a) Calomel electrode(c) Indicator electrode	(b) Hydrogen electrode(d) Ion selective electrode
8.	If the pH value of the solution is 5, what will	be the concentration of H+ ions
	(a) 10-0.2 gm/lit (c) 0.2 gm/lit	(b) -0.2 gm/lit (d) 10-5 gm/lit
9.	Scintillators are chemicals used to convert	
	(a) chemical energy to radiant energy(c) radiant energy to chemical energy	(b) radiant energy to light(d) light to radiant energy
10.	The primary signal of an NMR spectrum is c	alled
	(a) signal (c) FID	(b) Fourier Transformation(d) Laplace Transformation
	PART - B (5 x 2	= 10 Marks)
11.	State Beer-Lambert Law.	
12.	List out the different types of gas chromatogr	raphic detectors.
13.	Give the methods of measurements of Oxyge	en.
14.	Define ion-selective electrode. List its types.	
15.	Why do we go for a solid state detector?	
	PART - C (5 x 16	5 = 80 Marks)
16.	(a) With a neat diagram explain the considuals double-beam UV spectrophotometer.	struction and working of single beam and (16)
	Or	
	(b) Elaborate in detail about the working p neat diagram.	orinciple of flame emission photometer with (16)

17.	(a)	With a neat diagram discuss the role of instrumentation system in high presliquid chromatography.	ssure (16)
		Or	
	(b)	(i) Brief about the working principle of flame ionization detector.	(8)
		(ii) Illustrate the operating principle of thermionic emission detectors.	(8)
18.	(a)	Explain about the functioning of Magnetic wind based oxygen analyzer with its diagram.	neat (16)
		Or	
	(b)	List out the various methods for dust and smoke measurement. Discuss any methods in detail.	two (16)
19.	(a)	With the complete details of electrodes used, explain about pH measurement.	(16)
		Or	
	(b)	Explain in detail about how the concentration of sodium can be found using a sodium can be found using a sodium.	dium (16)
20.	(a)	Describe the working principle of different mass spectrometers with neat diagram	ams. (16)
		Or	
	(b)	Explain about the following: (i) GM Counter and (ii) Proportional counter.	(16)