С	Reg. No. :													
							-			1	II			
	Question Pa	per (Cod	le: 5	532()6								
B.E	E. / B.Tech. DEGREE	EXAN	MIN	ATI	ON, I	NOV	/ 201	9						
	Third	l Seme	ester											
	Computer Scier	nce an	d En	gine	ering	3								
1	5UCS306 – DATABA	ASE S	YST	ΈM	CON	ICE	PTS							
	(Regul	ation	2015)										
Duration: Three hours	Answer A	ALL Q	uest	ions			Ma	axim	um:	100	Mark			
	PART A - (5 x 1 =	= 5 N	/lark	s)									
1. Department (dept n dept name, salary) Here using comm relat	name, building, budge Here the dept_name on attributes in relations.	et) and attrib ation	d En ute a schei	nploy nppea ma	yee (ars in is or	emp n bo ne v	loyed th th vay	e_id, le rel of r	nam latior elati	ne, ns. ng	CO			
(a) Attributes of Co	(a) Attributes of Common			(b) Tuple of common										
(c) Tuple of distinc	(c) Tuple of distinct			(d) Attributes of distinct										
2. Which forms has a	relation that possesses	s data	abou	ıt an	indi	vidua	al en	tity:			CO2			
(a) 2NF	(b) 3NF	(c) 4N	١F					(d) 5	NF				
3. Which of the follow safety from deadlow	owing protocols ensur cks?	res co	nflic	t sei	rializ	abili	ty a	nd			CO3			
(a) Two-phase lock	(a) Two-phase locking protocol				(b) Time-stamp ordering protocol									
(c) Graph based pro	otocol	(d) None of the mentioned												
4. The RAID level wh	nich mirroring is done	n mirroring is done along with stripping is CO4												
(a) RAID 1+0	(b) RAID 0	(c) RA	ID 2	2 ((d) B	oth I	RAII) 1+() and	l RAI			
5. Which is a join con	Which is a join condition contains an equality operator:								COS					
		-												
(a) Equijoins		(b) Ca	artes	ıan									

6. Consider the following relational database :

employee (employee-name, street, city) works (employee-name, company-name, salary) company (company-name, city) manages (employee-name, manager-name)

Give an SQL DDL definition of this database. Identify referential-integrity constraints that should hold, and include them in the DDL definition.

- 7. Write an assertion for the banking database to ensure that the assets value for the CO2- R Coimbaore branch is equal to the sum of all the amounts lent by the Coimbatore branch.
- 8. Explain how the issues of atomicity and durability are relevant to the creation and CO3- R deletion of files, and to writing data to files.
- 9. State the differences between primary index and secondary index CO4- R
- 10. What are the advantages and disadvantages of hash indices relative to B^+ -tree CO5-R indices?

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) Develop a ER Model for a vehicle insurance company whose CO1- App (16) customers own one or more vehicles each. Each vehicle has associated with it zero to any number of recorded accidents. Each insurance policy covers a maximum of two vehicles, and payment associated with it. Payment of insurance is for a period of two years and has associated due date.

Or

(b) Consider the following 'banking' database. Write Relational CO1- App (16) Algebraic Expressions for the given queries.

Customer(<u>customer_id</u>, person_name, street, city) Works (<u>customer_id</u>, company_name, deposit) Company (<u>company_name</u>, city) Manages (<u>customer_id</u>, manager_name)

- 1. Find all customers in the database who deposit more than each customer of "ABC Bank".
- 2. Assume that the bank may be located in several cities. Find all branches located in every city in which "ABC Bank" is located.
- 3. Find the bank that has the most customers.
- 4. Find those banks whose customers deposit a higher amount, on average, than the average deposits at "ABC Bank".

CO1- R

12. (a) Let R = (A,B) and S = (A,C), and let r(R) and s(S) be relations. CO2- App (16) Write an expression in SQL for each of the queries below: a. $\{ < a > | \exists b (<a,b>\in r \land b = 17) \}$ b. $\{ < a, b, c > | <a,b>\in r \land <a,c>\in s \}$ c. $\{ < a > | \exists c (<a,c>\in s \land \exists b_1, b_2 (< a,b_1>\in r \land < c, b_2>\in r \land b_1>$ $b_2)) \}$

Or

- (b) Define BCNF .How does it differ from 3NF. CO2- App (16)
- 13. (a) Suppose that we decompose the schema R = (A, B, C, D, E) into CO3- Ana (16) (A, B, C) (A, D, E) a. Show that this decomposition is a lossless-join decomposition if the following set F of functional dependencies holds: $A \rightarrow BC$ $CD \rightarrow E$ $B \rightarrow D$ $E \rightarrow A$

Or

(b) Consider the precedence graph in the following figure. Is the CO3- Ana (16) corresponding schedule conflict serializable? Explain your answer.

14. (a) Construct a B⁺-tree for the following set of key values: CO4-U (16) (2, 3, 5, 7, 11, 17, 19, 23, 29, 31)
Assume that the tree is initially empty and values are added in ascending order. Construct B⁺-trees for the cases where the number of pointers that will fit in one node is as follows: (a) Four

(b) Six

(c) Eight

Or

(b) Explain optimization of Disk block access.

CO4- U (16)

15.	(a)	Elucidate aggregation operations with a neat example	CO5- U	(16)
		Or		
	(b)	Elucidate cost based optimization with a neat illustration	CO5- U	(16)