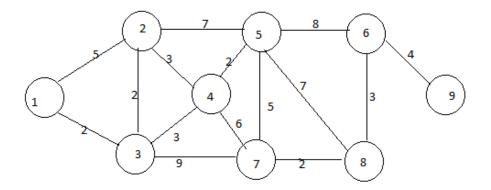
	B.E.	/B.Tech. DEGREE EX	AMINATION, NOV 201	9								
		Third Se	emester									
Computer Science and Engineering												
15UCS302 -DATA STRUCTURES												
(Regulation 2015)												
Duration: Three hours Answer ALI			Maximum: 100 Marks L Questions									
	PART A - $(5 \times 1 = 5 \text{ Marks})$											
1.	The maximum numb	per of nodes in a binary	tree of height h is	CO1- R								
	(a) h-1 2+1	(b) h+1 2– 1	(c) h*1 2-1	(d) h-1 2-1								
2.	What are the worst search tree?	complexities of a binary	CO2- U									
	(a) O(n), O(n)	(b) O(logn), O(logn)	(c) O(logn), O(n)	(d) O(n), O(logn)								
3.	Heap can be used as			CO3- R								
	(a) Priority queue		(b) Stack									
(c) A decreasing order array			(d) None of the mentioned									
4.	4. How many key values encountered collision using the hash function h(k) = k mod 10 and linear probing will result in the hash given below?											
	0 1 2 42 3 23 4 34 5 52 6 46 7 33 8											
	(a) 2	(h) 2	(a) A	(4) 5								

(a) 2 (b) 3 (c) 4

(d) 5

5.		Given an undirected graph G with V vertices and E edges, the sum of the degrees of all vertices is							
	(a) I	Ε	(b) 2E	(c) V	(0	d) 2V			
			PART – F	$3 (5 \times 3 = 15 \text{Marks})$					
6.	Define the following terminologies in a tree						CO1- U		
	(a) Siblings,Parent								
	(b) l	Depth,Path							
	(c) Height, Degree								
7.	Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty binary search tree. The binary search tree uses the usual ordering on natural numbers. What is the in-order traversal sequence of the resultant tree?								
8.	Def	Define Decision Tree.					CO3- R		
9.	What is open addressing? List the common collision resolution strategies.					S.	CO4- R		
10.	Def	Define Shortest path problem. Give examples.					CO5- U		
			PART -	- C (5 x 16= 80Marks	s)				
11.	(a)	•		the pre order travers		CO1-	App	(16)	
	Inorder:H D I J E K B A L F M C N G O								
		Postorder: H I	DJEBLMFN	OGCA					
			O	r					
	(b)	Explain the cond	cepts of on thread	ed binary tree in deta	il.	CO1-	App	(16)	
12.	(a)	Construct AVL 1,2,3,4,8,7,6,5,1	Tree for the follow 1,10,12.	J		CO2-	App	(16)	
	(b)	Explain the B-T	ree with example			CO2-	App	(16)	


13. (a) Explain Insertion in Deap and construct deap for the following CO3-U (16) elements. 14,8,78,2,85,68.

Or

- (b) Discuss about Game tree with suitable example. CO3- U (16)
- 14. (a) What is hashing? Explain open addressing and separate chaining CO4-U (16) methods of collision resolution techniques with examples.

Or

- (b) Explain in detail about extendible hashing and its Applications. CO4- U (16)
- 15. (a) Find the minimum spanning tree using Kruskal's algorithm for CO5-App the following Graph and trace the algorithm. (16)

Or

(b) Explain Dilkstra's single source shortest path problem with neat CO5- App example. (16)