Reg. No.:					

Question Paper Code: 43202

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Third Semester

Computer Science and Engineering

14UCS302 - DATA STRUCTURES

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

- 1. Which of the following operations is performed more efficiently by doubly linked list than by singly linked list?
 - (a) Deleting a node whose location in given
 - (b) Searching of an unsorted list for a given item
 - (c) Inverting a node after the node with given location
 - (d) Traversing a list to process each node
- 2. The data structure required to check whether an expression contains balanced parenthesis is
 - (a) stack

- (b) queue
- (c) tree
- (d) array

- 3. The prefix form of an infix expression a + b c * d is
 - (a) + ab *cd
- (b) -+abc*d (c) -+ab*cd (d) -+*abcd
- 4. The post order traversal of a binary tree is DEBFCA. Find out the pre order traversal
 - (a) ABFCDE
- (b) ADBFEC
- (c) ABDECF
- (d) ABDCEF

5.	Which amongst the following cannot be a balance factor of any node of a tree?							
	(a) 1	(b) 2	(c)	0	(d) -1			
6.	In a heap, elem	ent with the gre	eatest key is alway	s in the	node	e.		
	(a) Leaf			(b) Root				
	(c) First node of left sub tree			(d) First node of right sub tree				
7.	If unions are done by size, if a node is initially at depth 0, the depth of any node is never more than							
	(a) n-1		(b) log n	(c) n	((d) n/2		
8.	A union find da	ata-structure is	commonly applied	l while impleme	enting			
9.	(c) Compu algorith (d) Compu	ting the minimu m ting the all-pair	traversal of a graph am spanning tree of as shortest path in a est path algorithm	of a graph using a graph				
<i>)</i> .	-	•	structure to be use	_	a grapus so	that It		
	(a) Queue	(1	b) Stack	(c) Heap	((d) B-Tree		
10.	In a graph if e=	[u, v], Then u a	and v are called					
	(a) endpoi	nts of e (1	b) adjacent nodes	(c) neighbors	((d) all the		
		PAR	$RT - B (5 \times 2 = 10)$	Marks)				
11.	State ADT for	push operation.						
12.	Define a thread	led binary tree.						
13.	Express the per	colate up strate	gy in Heap tree A	DT?				
14.	Define an equi	valence relation	ı .					
15.	What is meant	by strongly con	nected and weakly	y connected in	a graph?			

PART - C (5 x 16 = 80 Marks)

16. (a) Explain the Linked implementation of stack and queue. How will you represent a Polynomial using an array? (16)

Or

- (b) Write an algorithm to convert infix to postfix notation and prefix notation using stack. (16)
- 17. (a) List the different types of tree traversal. Develop an algorithm for traversing a Binary tree. Validate the algorithm with a suitable example. (16)

Or

- (b) (i) What are expression trees? Represent the following expression using a tree. Comment on the result that you get when this tree is traversed in Preorder, Inorder and Postorder. (a-b)/((c*d)+e). (8)
 - (ii) What is a Binary Search Tree (BST)? Make a BST for the following sequence of numbers. 45, 36, 76, 23, 89, 115, 98, 39, 41, 56, 69, 48. (8)
- 18. (a) Briefly explain the single and double rotation of AVL tree with examples. (16)

Or

- (b) (i) What are expression trees? Represent the following expression using a tree. Comment on the result that you get when this tree is traversed in Preorder, Inorder and Postorder. (a-b)/((c*d)+e). (8)
 - (ii) What is a Binary Search Tree (BST)? Make a BST for the following sequence of numbers. 45, 36, 76, 23, 89, 115, 98, 39, 41, 56, 69, 48. (8)
- 19. (a) Given the following keys $\{4371, 1323, 6173, 4199, 4344, 9679, 1989\}$ and a hash function $h(X) = X \pmod{10}$, construct.
 - (i) separate chaining table
 - (ii) an Open addressing hash table using linear probing
 - (iii) an Open addressing hash table using quadratic probing
 - (iv) an Open addressing hash table with second hash function

		$h2(X) = 7-(X \mod 7).$	(16)
		Or	
	(b)	(i) Illustrate the smart union algorithm with suitable example.	(8)
		(ii) Discuss about the dynamic equivalence problem with example.	(8)
20.	(a)	Explain Euler circuit with suitable example.	(16)
		Or	
	(b)	(i) Write an algorithm to implement Depth-first search? How is search differing from Breadth-first search?	Depth-first (8)
		(ii) Discuss about Euler circuit with suitable example.	(8)