Reg. No. :	
------------	--

Question Paper Code: 33202

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Third Semester

Computer Science and Engineering

01UCS302 - DATA STRUCTURES

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

PART A - $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions.

- 1. What are the objectives of studying data structures?
- 2. Differentiate: Linear data structures and Non-Linear data structures.
- 3. What are the various tasks performed while traversing a binary tree?
- 4. What is the use of threaded binary tree?
- 5. Define: AVL Tree.
- 6. What is a heap? Give an example.
- 7. What is rehashing.
- 8. Identify the different properties of an equivalence relation in a set.
- 9. Briefly illustrate the adjacent matrix representation with an example.
- 10. What is bi-connectivity? Give an example

PART - B (5 x
$$16 = 80$$
 Marks)

11. (a) (i) Implement an algorithm to polynomials represented as single linked list. (8)

(ii) Develop algorithm for inserting and deleting values from a queue.

- (b) What do you mean by doubly linked list? Write an algorithm for inserting and deleting an element from doubly linked list. Illustrate with example. (16)
- 12. (a) What is a BST? Explain with suitable algorithms for insertion and deletion of nodes at different instances. Illustrate with suitable examples. (16)

Or

- (b) (i) Describe in detail about insertion routine of BST. (8)
 - (ii) Explain the algorithm for expression tree and construct the expression tree for the expression ab + cde + * *.
 (8)
- 13. (a) Explain the following routines in AVL tree with example: (i) Insertion (ii) Deletion (iii) Single rotation (iv) Double Rotation. (16)

Or

- (b) Explain with examples how a key value can be inserted and deleted in a B-Tree. (16)
- 14. (a) Explain in detail the path compression techniques. (16)

Or

- (b) Explain the smart union algorithm with example. (16)
- 15. (a) (i) Explain the Dijkstra's algorithm to shortest path with suitable example. (10)
 - (ii) Explain the topological sorting with example. (6)

Or

(b) Write an algorithm to find the shortest path using Dijkstra's algorithm. Find the shortest path from 'a' to 'd' in the graph given below.

