С		Reg. No. :											
Question Paper Code: 56201													
B.E./B.Tech. DEGREE EXAMINATION, NOV 2019													
Sixth Semester													
Computer science and Engineering													
15UCS601- PRINCIPLES OF COMPILER DESIGN													
(Regulation 2015)													
Dur	Duration: Three hours Maximum: 100 M) Ma	rks				
		PART A - (5	x 1 =	= 5 N	/lark	s)							
1.	A bottom up parser g	enerates							(CO1	-R		
	(a) Right most deriva	t most derivation (b) Rightmost derivation in reverse											
	(c) Leftmost derivation (d) Leftmost derivation in reverse												
2.	Which of the following	ng is not a function o	fbac	kpat	ching	g?						CC)2-R
	(a) Backpatch(p,i)	(b) Backpatch(i,p)	(0	c) M	akeli	st(i)			(0	l) Me	erge(p1,p	2)
3.	G. Grammar that produce more than one Parse tree for same sentence is						CO	3-U					
	(a) Ambiguous (b) Unambiguous												
	(c) Complementary (d) Concatenation Intersection												
4.	Code optimizations are carried out on the intermediate code because CO						CO4	-U					
	(a) Program is more a	accurately analyzed o	on inte	erme	diate	e cod	le tha	an or	n mao	chine	e cod	e	
	(b) Optimization info	rmation from data flo	ow ar	nalys	is ca	nnot	be u	ised					
	(c) They enhance the	portability of the con	npile	r to t	he o	ther	targe	et pro	ocess	or			
	(d) Optimization information from the front end cannot be used												
5 reduces the dimensions of an array and reduces the number of memory locations accessed								CC)5-R				
	(a) Locality of Comp	uted Data	(b)	Arra	ay co	ontra	ction	l					
	(c) Pipelining		(d)	Con	nmu	nicat	ion (Cost					
	PART – B (5 x 3= 15Marks)												
6.	Mention the advantages of having each phase of the compiler separately							CC	1-U				
7.	Construct a DAG for	the expression: a *	(b-c)) + (1	b-c)	d						CC	92-U

8.	What is three-address code?						
9.	Write about Constant folding.						
10.	Point out the techniques for improving data locality in uniprocessors and multiprocessors						
	PART – C (5 x 16= 80Marks)						
11.	(a)	Examine the different phases of compiler. Translate the following	CO1-App	(16)			
		statement into its equivalent target assembly code. $a := b + c * 60$					
Or							
	(b)	(i) Discover the purpose of compiler construction tools? explain it.	CO1- R	(8)			
		(ii) Explain input buffering techniques with suitable code?	CO1-R	(8)			
12.	(a)	Construct parse tree for the input string w=id+id*id using top down parser. E->TE'	CO2-Ana	(16)			
		E' ->+1E' E					

T->FT' T'->*FT'| ε

F->(E)|id

Or

(b) Construct stack implementation of shift reduce parsing for the CO2- Ana (16) grammar

E->E+E E->E*E E->(E) E->id and the input string id1+id2*id3.

13. (a) Explain the semantic actions required for translation of array CO3-U (16) reference.

Or

(b) Generate the intermediate code for the following code segment CO3-Ana (16) along with the required syntax directed translation scheme:

while(i<10) if(i%2==0) evensum=evensum+i; else oddsum=oddsum+i

14.	(a)	(i) Construct DAGs for the following basic blocks of TACs	CO4 -Ana	(8)					
		a = b + c; $b = a - d$; $c = b + c$; $d = a - d$;							
		(ii) Explain structure preserving transformation in detail using	CO4-Ana	(8)					
		basic blocks. $a = b + c$; $b = a - d$; $c = b + c$; $d = a - d$;							
	Or								
	(b)	Explain the ways in which the storage allocation is done in stack	CO4- U	(16)					
		heap memory management.							
15.	(a)	(i) Explain the principal sources of optimization techniques with	CO5-U	(8)					
		suitable examples							
		(ii) Write detailed notes on the peephole optimization techniques.	CO5-U	(8)					
Or									
	(b)	Explain about the Data reuse, its types in detail	CO5-U	(16)					