A		Reg. No. :]
		Question Par	per Co	de:	522()8A						
	E	B.E. / B.Tech. DEGR	EE EX	AMIN	IATI	ON,	NOV	/ 20	19			
		Second	l Semes	ter								
		Computer scient	ce and H	Engine	ering	5						
	15UCS208	8 - DIGITAL PRINC	CIPLES	AND	SYS	TEM	1 DE	SIG	N			
		(Common to Info	rmation	Tech	nolog	y)						
		(Regula	ation 20	15)								
Dur	ation: Three hours				N	/laxi	mum	: 100) Ma	rks		
		Answer A	LL Que	stions								
		PART A - (10	x 1 = 1	0 Ma	rks)							
1.	The binary equivalent	t of (1011.011)10 is	equal to	1							CO	01-R
	(a)11.375	(b) 10.123	(c) 1	1.175				(d)	9.23	4		
2.	The minterm expansion of $f(P, Q, R) = PQ + QR' + PR'$ is									(CO1-	-App
	(a) m2+m4+m6+m7	(b) m0+m1+m3+m	15 (c)	m0+r	n1+n	n6+n	า7	(d)	m2+	-m3-	⊦m4-	⊦m5
3.	Excess-3 code is know	wn as									CO2	2-R
	(a) Weighted Code		(b)	Cycli	c red	unda	ancy	Code	e			
	(c) Self – Complement	nting Code	(d)	Alge	braic	Cod	e					
4.	The binary representation of BCD number 00101001 (decimal					al 29	9) is			(CO2-	App
	(a) 1101001	(b) 0101011	(c) 0	01110)1			(d)	0110	0101		
5.	. The process of recording any music in any recorder is										CO)3-R
	(a) Encoding		(b) N	Aultip	lexin	g						
	(c) Decoding		(d) N	None of	of the	Mer	ntion	ed				
6.	Product terms are th array	e outputs of which	type of	gate	with	in a	PLE)			CO)3-R
	(a) OR	(b) XOR	(c) A	ND				(d) FL	IP-F	LOF	•

7.	The the p	logic circuit whose output at any insta present input but also on the past outpu	CO4-1	R				
	(a) I	Flip-flops	(b) Combinational circuits	8				
	(c) I	Latches	(d) Sequential circuits					
8.	For	JK flip Flop with J=1, K=0, the output	after clock pulse will be	CO4-I	R			
	(a) ()	(b) 1					
	(c) ł	nigh impedance	(d) No change					
9.	Tab	le that is not a part of asynchronous and	CO5-I	R				
	(a) f	flow table (b) excitation table	(c) state table	(d) transition table				
10.	Pres	sent states of asynchronous circuits are	CO5-I	R				
	(a) S	Secondary Variables	(b) Primary Variables					
	(c) I	Excitation Variables	(d) Short term Memories					
		PART – B (5	x 2= 10Marks)					
11.	List	the number systems	CO1-I	R				
12.	Wha	at is code conversion?		CO2-I	R			
13.	List	basic types of programmable logic dev	CO3-U	J				
14.	Wha	at is the difference between synchronou	·? CO4-]	R				
15.	List	out the steps for the design of asynchro	CO5-I	R				
		PART – C ((5 x 16= 80Marks)					
16.	(a)	(i) Explain BCD Code with Examples	CO1-U (10))				
		(ii) Describe negative and positive log	gic.	CO1-U (6	5)			
Or								
	(b)	Minimize the following Boolean expridentities $F(A, B, C)=A'B+BC'+BC'$	CO1-U (16	5)				
17.	(a)	Write short notes on: BCD adde Magnitude Comparator	r, Binary multiplier and	CO2-U (16	5)			

2

52208A

- (b) Describe and design a combinational circuit to convert binary CO2-U (16) code to gray code.
- 18. (a) Implement the combinational circuit with a PLA having 3 CO3-App (16) inputs, 4 product terms and 2 outputs for the functions $F_1 = \sum m(3, 5, 6, 7), F_2 = \sum m(0, 2, 4, 7).$

Or

- (b) Design using PLA. CO3-App (16) $A(x,y,z)=\sum m(1,2,4,6)$ $B(x,y,z)=\sum m(0,1,6,7)$ $C(x,y,z)=\sum m(2,6)$
- 19. (a) Using JK flip flops, design a parallel counter which counts in CO4-App (16) the sequence 000,111,101,110,001,010,000& repeats.

Or

- (b) Consider the design of 4-bit BCD counter that counts in the CO4-App (16) following way: 0000, 0001, 0010... 1001 and back to 0000.Draw the logic diagram of this circuit and describe it.
- 20. (a) Design an asynchronous circuit that has two inputs x₁ and x₂ and CO5-App (16) one output Z. the circuit is required to give an output whenever the input sequence (0, 0) (0, 1) and (1, 1) received but only in that order.

Or

(b) For a given Boolean function obtain the hazard free circuit and CO5-App (16) examine it. $F(A,B,C,D) = \Sigma m(1,3,6,7,13,15)$

52208A