Reg. No.:				
-----------	--	--	--	--

Question Paper Code: 42207

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Second Semester

Computer Science and Engineering

14UCS207 – DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Common to Information Technology)

	(Reg	gulation 2014)		
Duration: Three hour	S		Maximum: 100 Marks	
	Answei	r ALL Questions.		
	PART A -	(10 x 1 = 10 Marks)		
1. The output of an AND	gate is LOW	·		
(a) when any input is LOW (b) when any input is HIGH			IIGH	
(c) when all inputs are HIGH (d) all the time				
2. When used with an IC	, what does the terr	m "QUAD" indicate?		
(a) 4 circuits	(b) 2 circuits	(c) 8 circuits	(d) 6 circuits	
3. Which of the following	g expressions is in	the sum-of-products (SOF	r) form?	
(a) $AB + CD$	(b) AB(CD)	(c) (A+B)(C+D)	(d) (A)B(CD)	
4. The systematic reducti	on of logic circuits	s is accomplished by:		
(a) symbolic reduction		(b) using Boolean algebra		
(c) TTL logic		(d) using a truth table		
5. A demultiplexer is us	sed to			

(b) select data from several inputs and route it to a single output(c) steer the data from a single input to one of the many outputs

(a) perform arithmetic division

(d) perform parity checking

6. An EPROM				
(a) is of random	access type	(b) is non-	- volatile	
(c) is programmable		(d) has all	(d) has all the above requirements	
7. The basic shift regis	ter operations are			
(a) serial in seria	-		n parallel out	
(c) parallel in serial out			(d) all of the above	
-		1 1		
inputs?	owing flip-flop tr	ne output clearly o	lefined for all combinations of two	
(a) Q type flip-flop (b)		(b) R S type fli) R S type flip-flop	
(c) J K flip-flop			T flip-flop	
9. Combinations that are	not listed for inpu	ıt variables are		
(a) overflows	(b) carry	(c) dont cares	(d) zero bits	
10. If two systems have	different codes the	en circuit inserted	between them is	
(a) sequential circuit (b) combinational circuit				
(c) combinational sequence circuit (d) conversion circuit				
	PART -]	B $(5 \times 2 = 10 \text{ Mark})$	ks)	
11. Show that the dual of	f the exclusive-OI	R is equal to its co	mplement	
12. Explain the design procedure for combinational circuits.				
12. 2. p. p. m. v. v. v. v. p. p. p.				
13. Give the applications	of Demultiplexe	r.		
14. Justify the need for e	dge triggering.			
15. What is a Hazard in	Digital circuit?			
	PART - C	$C (5 \times 16 = 80 \text{ Mar})$	ks)	
	mized logic funct D)= $\sum m(1,3,5,8,9)$	•	and Realize sing NAND and NOR (8)	
(ii) Show that if a	all the gate in a tw	o-level OR-AND	gate network are replaced by NOR	
gate, the output function does not change. (8)				
		Or		

- (b) How would you express the Boolean function using K-map and draw the logic diagram $F(w,x,y,z) = \sum m(0,1,2,4,5,6,8,9,12,13,14)$ (16)
- 17. (a) (i) Analyze the function of Binary multiplier with neat diagram. (8)
 - (ii) Develop a Full adder using decoder. (8)

Or

- (b) Combinational logic circuit has two inputs (a,b) and four outputs (w,x,y,z). The outputs represent a binary number whose value equals the square of input. For example, if ab=10, then wxyz=0100. Design the circuit and show the logic diagram. (16)
- 18. (a) (i) Implement the following Boolean function with a 4:1 multiplexer and external gates.

$$F(A, B, C, D) = \sum (1, 3, 4, 11, 12, 13, 14, 15).$$
 (8)

(ii) Using a decoder and external gates, design the combinational circuits defined by the following three Boolean functions:

$$F1=x'y'z'+xz+yz$$

$$F2=xy'z'+x'y$$

$$F3=x'y'z+xy$$
(8)

Or

- (b) Design a BCD to Excess 3 code converter using PROM. (16)
- 19. (a) A sequential circuit has two flip flops (A and B), two inputs (x and y) and an output (Z). The flip flop input functions and the circuit output function are as follows.

$$JA = XB + y'B$$

$$JB = xA'$$

$$KA = xy'B'$$

$$KB = xy' + A$$

Z = xyA + x'y'B

Obtain the logic diagram; sate table, state diagram and state equations. (16)

Or

(b) Define encoder. Explain priority encoder with an example. (16)

20. (a) Design an asynchronous sequential circuit with two inputs *X* and *Y* and with one output *Z*. Whenever *Y* is 1, input *X* is transferred to *Z*. When *Y* is 0, the output does not change for any change in *X*. Use D- Flip flop for implementation of the circuit. (16)

Or

(b) With suitable example explain Race Free State assignment. (16)