Question Paper Code: 52207

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Second Semester

Computer Science and Engineering

01UCS207- DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Common to Information Technology)

(Regulation 2013)

Duration: Three hours

Answer ALL Questions.

Maximum: 100 Marks

PART A - (10 x 2 = 20 Marks)

- 1. Convert $(101101.1101)_2$ to decimal and hexadecimal form?
- 2. What is a logic gate??
- 3. Write down the truth table of a full subtractor.
- 4. Develop a HDL program module for half-adder.
- 5. Distinguish between a decoder and a demultiplexer.
- 6. Compare SRAM and DRAM.
- 7. Derive the characteristic equation of a JK flip flop.
- 8. What is a primitive flow table?
- 9. What is a critical race? State its importance in an asynchronous sequential circuit.
- 10. List the assumptions that must be made for a fundamental mode circuit.

PART - B ($5 \times 16 = 80$ Marks)

11. (a) Reduce the following function using K-map technique and implement the reduced Boolean expression with basic gates

$$f(A, B, C, D) = \pi M (0, 3, 4, 7, 8, 10, 12, 14) + d (2, 6).$$
(16)

Or

- (b) Minimize the expression using Quine McCluskey method (Tabulation) method $F = \sum m(0, 1, 9, 15, 24, 29, 30) + \sum d(8, 11, 31).$ (16)
- 12. (a) Design a circuit that converts 8421 BCD code to Excess 3 code. (16) Or
 - (b) (i) Design a combinational logic circuit to compare two 2-bit binary numbersA and B and to check whether A<B, A=B or A>B.(8)
 - (ii) Explain the BCD adder with a neat block diagram. (8)
- 13. (a) Implement the following Boolean function using a 8 to 1 multiplexer
 F(A, B, C, D) = A'BD'+ ACD+ B'CD+ A'C'D. Also implement the function using 16 to 1 multiplexer. (16)

Or

- (b) Implement the Boolean function using 8:1 multiplexer F(A, B, C, D) = AB'D + A'C'D + B'CD' + AC'D. (16)
- 14. (a) Draw the state diagram and obtain the characteristic equation of T, D and JK flip-flop. (16)

Or

- (b) (i) Explain in detail about parallel in serial out shift register, with neat sketches.
 - (ii) Write the HDL for full adder circuits. (6)

(10)

15. (a)	(i)	Describe the design procedure for asynchronous sequential circuits.	(10)
	(ii)	Write short notes on ASM chart.	(6)

Or

(b) Explain the method for the minimization of primitive flow table with an example.

(16)

#