										1		٦
C	R	eg. No. :										
	Ques	tion Pa	per C	ode:	5420)3						
	B.E. / B.Tech. I	DEGREE	EXAM	INAT	ION,	NOV	, 201 /	9				
		Fourth	n Semes	ster								
	Comp	outer Scier	nce and	Engin	eerin	g						
	15UCS403- DESIG	GN AND A	ANAL	YSIS (OF Al	LGO	RITH	IMS				
		(Regul	ation 2	015)								
Dur	ation: Three hours						Max	kimu	m: 1	00 N	Mark	5
		Answer A	LL Qu	estion	S							
	PA	ART A - (:	5 x 1 =	5 Mar	ks)							
1.	What is the best time complexit	y of Bubb	le sort	2							CC)1- R
	(a) N^2 (b) N l	og N	((c) N (d) $N (\log N)^2$				$N)^2$				
2.	Floyd – Warshall algorithm ut paths problem on a directed gra	ilizes ph in	tiı	to sol ne.	ve th	e all	pair	s sho	ortes	t	CC	02- R
	(a) Greedy algorithm, $\theta(V^3)$		(t) Gree	edy al	gorit	hm, ($\theta(V^2)$	lg n)			
	(c) Dynamic programming, θ (V	^{7³})	(c	l) Dyn	amic	prog	ramn	ning,	θ (V	² lg 1	n)	
3.	is simply a bi	ute-force	approa	ch to c	ombi	nator	ial p	roble	ems.		CO3	- R
	(a) Exhaustive search		(t) Pern	nutati	ons						
	(c) Hamiltonian circuit		(c	l) Non	e of tl	ne ab	ove					
4.	The best-known algorithm for the single-source shortest-paths problem, called						CO)4-R				
	(a) Dijkstra's algorithm		(t) Prin	ns Alg	orith	m					
	(c) Kruskal's algorithm		(c) Non	e of tl	ne ab	ove					
5.	Let X be a problem that belong following is TRUE?	s to the cla	ass NP.	Then	whicl	n one	of th	ne			CC)5- R
	(a) There is no polynomial time	algorithn	n for X.									
	(b) If X can be solved determin	istically in	n polyn	omial	time,	then	P=N	P.				
	(c) If X is NP-hard, then it is N	P-Comple	te									

(d) X may be undecidable

6.	Disc	suss the principle of Optimality.	CO1- R			
7.	Wha	t is the complexity bubble sort.	CO1- U			
8.	Illus	trate the general characteristics of Greedy algorithm	CO3- U			
9.	Wha	What is maximum flow problem?				
10.	Summarize the advantages and applications of Backtracking.					
		PART – C (5 x 16= 80 Marks)				
11.	(a)	Describe briefly the Time complexity estimation, Space complexity estimation and tradeoff between Time and Space complexity	CO1- App	(16)		
		Or				
	(b)	Prove that for any two functions $f(n)$ and $g(n)$, we have $f(n)=\emptyset(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\omega(g(n))$.	CO1- App	(16)		
12.	(a)	Write an algorithm to perform binary search on a sorted list of elements. Analyze the algorithm for the best case, average case and worst case.	CO2- U	(16)		
		Or				
	(b)	Explain the various algorithms for generating combinational objects.	CO2- U	(16)		
13.	(a)	Explain the algorithm for computing Binomial Coefficient. Or	CO3- Ana	(16)		
	(b)	Apply Kruskal's algorithm to find a minimum spanning tree of the following graph	CO3- Ana	(16)		

14.	(a)	Consider the following linear programming with two variables.	CO4 U	(16)	
		-x+y<=12,			
		x+y>=30,			
		$2x+y \le 90$. Calculate the maximum value of $z=4x+6y$, where			
		$x \ge 0$ and $y \ge 0$.			
		Or			
	(b)	Explain how linear programming is solved by simplex method.	CO4- Ana	(16)	
15.	(a)	Apply Backtracking technique to solve the following instance of	CO5- U	(16)	
		subset sum problem: $S = \{1,3,4,5\}$ and $d=11$			
		Or			
	(b)	Solve the following instance of knapsack problem by Branch and	CO5- U	(16)	
		Bound algorithm.			

Item	Weight	Profit	
1	5	\$40	
2	7	\$35	
3	2	\$18	w = 15
4	4	\$4	
5	5	\$10	
6	1	\$2	