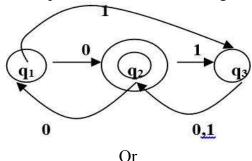
C	1	Reg. No. :											
]	Question Pape	er (Code	e: 55	5204	4						
B.E./B.Tech. DEGREE EXAMINATION, NOV 2019 Fifth Semester Computer Science and Engineering													
15UCS504- THEORY OF COMPUTATION													
(Regulation 2015)													
Dura	ntion: Three hours	Answer AL	LL Ç	Juest	ions]	Max	imur	n: 10	00 M	arks
		PART A - (5	x 1	= 5 N	Aark	s)							
1.	Ň ŚŚ								1 - U				
	(a) 3	(b) 2		(c) 1			(d) Ca	n't b	e rep	orese	nted	
2.	Which of the follow Language: {0,01}	wing does not repr	rese	nts	the	givei	n la	ngua	ge?			CO	2- U
	(a) 0+01	(b) {0} U {01}		(c) {	{0} L	J {0}	{1}		(d)	{0}	^ {0	1}	
3.	If L1 and L2 are context free languages, L1-L2 are context free: CO3- R							3- R					
	(a) Always	(b) Sometimes		(c) l	Neve	r	(d) No	ne o	f the	abov	ve	
4.	A push down automat transition around all c			_ifi	it has	s at n	nost	one				CO	4- R
	(a) Finite	(b) Non regular	(c)) Nor	n-det	ermi	nistio	c	(d)	Dete	ermir	nistic	
5. A Language L may not be accepted by a Turing M						ne if	:					CO	5- R
	(a) It is recursively en	umerable	le (b) It is recursive										
	(c) L can be enumerat	ed by some turing ma	achi	ne	(d)) Noi	ne of	the	abov	ve			
PART – B (5 x 3= 15 Marks)													
6.	How a Non determ Deterministic finite st		au	itoma	ita (NFA	A) d	liffer	s fr	om	a	CO	1- R
7.	Define Pumping lemn	na for regular languag	ge.									CO	2- R

8. Define a derivation tree for a context-free grammar. CO3- R

- 9. What are the closure properties of context-free language?
- 10. Define the language of Turing Machine.

$$PART - C (5 \times 16 = 80 Marks)$$


11. (a) Convert the following NFA to it's equivalent DFA.

	0	1				
q0	{q0,q1}	{q0 }				
q1	q2	q1				
q2	q3	q3				
*q3	φ	q2				
Or						

(b) Compute (i) ϵ -closure (ii) Convert the automaton to a DFA CO1- App

δ	e	а	b	С
р	{ \$ }	{ p }	{q}	{r}
q	{ p }	{q}	{r}	{ \$ }
r	{q}	{ r }	{φ}	{ p }

12. (a) Construct Regular Expression for the following DFA. CO2- App (16)

- (b) Construct min DFA for the regular expression $(a/b)^*$ abb $(a/b)^*$. CO2- App (16)
- 13. (a) (i) Show that the grammar S->a | abSb | aAb, ,A->bS | aAAb is CO3- App (6) ambiguous.
 - (ii) Consider the following productions: CO3- App (10)

S ->aB | bA A->aS | bAA | a B->bS | aBB | b.

For the string aaabbabbba, find a leftmost derivation, a rightmost derivation and draw the derivation tree.

2

CO4- R CO5- R

(16)

(16)

CO1- App

(b) (i) Find a grammar in Chomsky normal form equivalent to form. CO3- App (8)
S->AB/aB
A->aab/c
B->bbA

(ii) Construct a grammar in GNF which is equivalent to the CO3- App (8) grammar

S->AA/a A->SS/b

14. (a) (i) Construct a PDA accepting by empty stack the languages CO4- App (8) $a^{m}b^{m}c^{n}/m,n \ge 1$

(ii) Show that if a language L is accepted by a PDA then there CO4-U (8) exists a CFG generating L.

Or

(b) (i) Let L be $L(P_F)$ for some PDA PF = $(Q,\Sigma,\Gamma,\delta_F,q_0,Z_0,F)$. Then CO4-U (8) there is a PDA P_N such that $L = N(P_N)$ [From final state to empty stack]

(ii) Construct a context-free grammar G which accepts N (M), CO4-App (8) where $M = (\{q0,q1\}, \{a,b\}, \{z0,z1\}, \delta, q0, z0, \phi)$ and where δ is given by

$$\begin{split} \delta(q0, b, z0) &= \{ (q0, zz0) \} \\ \delta(q0, \epsilon, z0) &= \{ (q0, \epsilon) \} \\ \delta(q0, b, z) &= \{ (q0, zz) \} \\ \delta(q0, a, z) &= \{ (q1, z) \} \\ \delta(q1, b, z) &= \{ (q1, \epsilon) \} \\ \delta(q1, a, z0) &= \{ (q0, z0) \} \end{split}$$

15. (a) (i) Construct a TM for the language $L=\{a^nb^nc^n/n\geq 0\}$.CO5- U(8)(ii) Explain Multitape TM and Non deterministic TMCO5- U(8)

Or

(b) (i) Construct a Turing machine to compute multiplication with CO5-U (10) subroutine "copy"

(ii) Show that for two recursive language L1 and L2 each of the CO5-U (6) following is recursive

- 1. L1U L2
- 2. L1∩ L2
- 3. L1