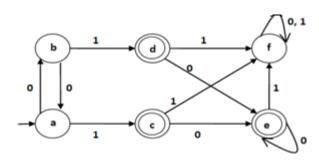
Reg. No.:					
·					

Question Paper Code: 45204

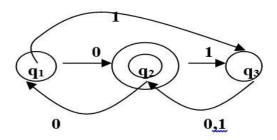
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

		Fifth Semest	er	
	Comput	ter Science and	Engineering	5
	14UCS504 -	THEORY OF	COMPUTA	TION
		(Regulation 20	014)	
Du	ration: Three hours			Maximum: 100 Marks
	A	nswer ALL Que	estions	
	PART	$\Gamma A - (10 \times 1 =$	10 Marks)	
1.	Any NFA can be converted to a	DFA		
	(a) always(c) depending on the NFA		(b) never (d) depend	ding on the language of NFA
2.	What is the minimum number of strings which contains four conse		FA that rec	eognizes the set of all binary
	(a) 6 (b)	5	(c) 4	(d) 3
3.	The string 1101 does not belong	to the set repres	sented by	
	(a) 110*(0+1) (c) (10)*(01)*(00+11)	(b) 1(0+1) (d) ((11)*+		
4.	The finite automata accept which	n of the following	ng language	
	(a) context free language(c) context sensitive language	ge	(b) regular (d) all the	r language above


- 5. How many tuples are needed to represent an instantaneous description of a PDA?
 - (a) 1 (b) 2 (c) 3 (d) 4

6.	The language $L = \{0^m \ 1^m \}$	$/ m \ge I$ is a						
	(a) regular language(c) both (a) and (b)			(b) context free language(d) none of these				
7.	The class of context free l	language is no	t closed ur	nder				
	(a) Concatenation(c) Union			(b) intersection(d) Repeated concatenation				
8.	Context free grammars ar	e closed under	r					
	(a) union (b) kleene star			oncatenation	d) all the above	l) all the above		
9.	What is the maximum nu consists of four transition		es is genera	ated to enco	de a turing machine w	vhich		
	(a) 12	(b) 24	(c) 3	86	(d) 48			
10.	The diagonalization langu	age L _d is						
	(a) recursive(c) recursively enumerable			(b) not recursively enumerable(d) both (a) and (c)				
		PART - B ($5 \times 2 = 10$	Marks)				
11.	Differentiate DFA and NI	FA.						
12.	State the pumping lemma	for regular la	nguages.					
13.	Define the language gene	rated by a PD	A.					
14.	Design a turing machine t	for computing	the function	on $f(x) = x$	+ 1.			
15.	Define the classes P and I	NP.						
		PART - C (5	$5 \times 16 = 80$	Marks)				
16.	(a) (i) Prove that for ever	ery integer n≥0	the numb	$er 4^{2n+1} + 3^{n-1}$	⁺² is multiple of 13.	(10)		
	(ii) Convert the giver	NFA to DFA	۸.			(6)		
		q2 (q0, q1} q2 q3	1 q0 q1 q3 q2				

(b) (i) Consider the following E-NFA. Compute E-closure of each state and find its equivalent DFA. (10)


δ	3	a	b	c
\rightarrow	ф	{p	{q	{r}
q	{p	{q	{r}	ф
*r	{q	{r}	ф	{p

- (ii) Design a DFA which accepts odd number of 1's and any number 0's. (6)
- 17. (a) (i) Construct the \mathcal{E} NFA for the regular expression (1+0)*1(1+0). (6)
 - (ii) Find the minimized state DFA for the given DFA. (10)

Or

(b) Obtain the regular expression that denotes the language accepted by, using the recursive relation. (16)

18. (a) (i) Let $S \to aB/bA$, $A \to aS/bAA/a$, $B \to bS/aBB/b$. Show that $S \Rightarrow aaabbabbba$ and construct a derivation tree whose yield is in "aaabbabbba". (8)

(ii) Construct a PDA for the language
$$L = \left\{ \frac{a^n \ b^{2n}}{n \ge 1} \right\}$$
. (8)

Or

	(b)		Convert the context free grammar $S \to aA$, $A \to aABC/bB/a$, $B \to b$, $C \to c$ into pushdown automata and process the string "aaabc". (8) Show that the following grammars are ambiguous. $\{S \to aSbS/bSaS/\epsilon\}$ and $\{S \to AB/aaB, A \to a/aA, B \to b\}$. (8)
19.	(a)	(i)	Begin with grammar $S \to 0A0/1B1/BB$, $A \to C$, $B \to S/A$, $C \to S/\varepsilon$ and simplify using safe order
			(1) eliminate ε production (2) eliminate unit production
			(3) eliminate useless symbols (4) put the resultant grammar in CNF. (8)
		(ii)	Show that the language $L = \{a^i \ b^j c^i d^j / i \ge 1 \text{ and } j \ge 1\}$ is not CFL. (8)
			Or
	(b)	(i)	Discuss the closure properties of CFL and prove any one of the property. (8)
		(ii)	Explain the programming techniques of Turing machine. (8)
20.	(a)	(i)	State post correspondence problem. Let $\sum = \{a, b\}^*$. Let A and B be lists of three strings as given below $A = \{b, bab^3, ba\}$ $B = \{b^3, ba, a\}$. Does this instance of PCP have a solution? (6)
		(ii)	Prove that for two recursive language L_1 and L_2 , their union and intersection is recursive. (10)
			Or
	(b)	(i)	Define universal language L_u . Prove that L_u is recursively enumerable. (8)
		(ii)	State halting problem. Show that it is undecidable. (8)