C		Reg. No. :											
Question Paper Code: 59216													
B.E. / B.Tech. DEGREE EXAMINATION. NOV 2019													
Elective													
Computer Science and Engineering													
15UCS916-CRYPTOGRAPHY													
(Regulation 2015)													
Duration: Three hours Maximum: 100 Marks										5			
		Answer AI	LL Qu	iestio	ons								
PART A - $(5 \times 1 = 5 \text{ Marks})$													
1.	A way to improve on the simple mono alphabetic technique is to use CO1 -R different mono alphabetic substitutions as one proceeds through the plaintext message. The general name for this approach is									1 -R			
	(a) Poly alphabetic subs	(b	(b) cryptanalysis										
	(c) Poly analysis cipher	(d) rail fence cipher											
2.	DES has an initial and final permutation block and rounds CO										CO	2 -R	
	(a) 14 ((b) 15	(c)) 16					((d) 1	7		
3.	On Encrypting "cryptography" using Vignere Cipher System using the CO3 - keyword "LUCKY" we get cipher text										3 -R		
	(a) nlazeiibljji (b) nlazeiiblljii												
	(c) olaaeiibljki			(d) mlaaeiibljki									
4. The purpose of Diffie Hellman algorithm is												CO	4- R
	(a) To exchange the key	(b	(b) To exchange the name of the algorithm										
	(c) To find GCD	(d	(d) To find the largest prime number										
5.	In tunnel mode IPsec pr									CO	5 -R		
	(a) Entire IP packet		(b) IP ł	nead	ler							
	(c) IP payload		(d) Noi	ne o	f the	e thes	e					

$PART - B (5 \times 3 = 15 \text{Marks})$

6.	Draw the X.21 architecture and explain in detail.									CO1 -R		
7.	Define Diffusion & Confusion.										CO2 -R	
8.	Draw the block diagram of one round of DES and write down its strength.									h.	CO3 -R	
9.	State avalanche effect									CO4 -R		
10.	Briefly enumerate the key features of SET services.										CO5 -R	
PART – C (5 x 16= 80Marks)												
11.	(a) (i) Explain OSI security architecture model with neat diagram								CO1 -U	(10)		
		(ii) Describe the various security mechanisms.								CO1 -U	(6)	
Or												
	(b)	(b) (i) State Chinese Remainder theorem and find X for the given set								CO1 - App	(12)	
	of											
	congruent equations using CRT.											
	$X=2 \pmod{3}$											
	$X=3 \pmod{5}$											
	$X=2 \pmod{7}$											
	(ii) The enemy must be stopped at all costs. Do whatever CO1-App									(4)		
	necessary".											
			Т	Μ	Р	Q	S					
			Ζ	V	W	Х	Y					
			Е	0	С	U	R					

12. (a) With a neat sketch, explain about the DES encryption and CO2- App (16) decryption process with the internal structure.

В

I/J

D

Κ

Or

Α

Η

F

L

Ν

G

(b) Encrypt the message "PAYMOREMONEY" using Hill cipher CO2- Ana (16) with the following key matrix. Also explain the hill cipher substitution technique.

$$K = \begin{pmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{pmatrix}$$

13. (a) Brief out the encryption and decryption process of DES and CO3- Ana (16) depict the general structures.

2

- (b) Elaborate the different methods of public key distribution systems CO3- Ana (16) with suitable diagrams. Vivid how discrete algorithm in the Diffie Hellman key exchange in exchanging the secret key among users with q=353 and α =3 Secret key of A & B are x_A=97, x_B=233 respectively.
- 14. (a) Explain RSA algorithm, perform encryption and decryption for CO4- U (16) the following message "India is the most developing country in the world" with p=7; q=11; e=17; M=8

Or

- (b) Explain the process of deriving eighty 64-bit words from 1024 CO4- Ana (16) bits for processing of a single blocks and also discuss single round function in SHA-512 algorithm.
 Show the values of W16, W17, W18 and W19.
- 15. (a) Write the algorithm of MD5 and explain. Compare its CO5-U (16) performance with SHA-1.

Or

(b) Sketch the SSL Record format and describe about the services CO5 -U (16) and protocols comprised in SSL Record protocol.