С		Reg. No. :					
		Question Paper C	Code: 59227]			
	B.E.	/B.Tech. DEGREE EXAN	/INATION, NC	U 2019			
		Elective	e				
		Computer Science an	nd Engineering				
	15U	CS927- MACHINE LEAF	RNING ALGOR	ITHMS			
		(Regulation	2015)				
Dur	Puration: Three hours Maximum: 100 Marks						
		Answer ALL Q	uestions				
		PART A - (5 x 1	= 5 Marks)				
1.	Number of categories in Machine learning					CO1-	
	(a) 1	(b) 2	(c) 3		(d) 4		
2.	In statistics term, which represents the weighted average score						
	(a) Variance	(b) Mean	(c) Median		(d) Moo	le	
3.	Which of the following is an example of ensemble learning algorithm? CO3-						
	(a) Decision Tree	(b) SVM	(c) Random	forest	(d) k-NN	J	
4.	In Competitive netwo	orks, output neurons are co	onnected with			CO4-	
	(a) Each other	(b) Input Neurons	(c) Synapse	(d) 1	None of th	e above	
5	A Voronoi diagram i	s used in which type of clu	istering?			C05-	
5.	(a) Hierarchical	(b) Partitioning	(c) Density	based	(d) Intu	ition base	
	(a) meraremear	(0) f artitioning	(C) Defisity (Uascu	(u) mu		
(PARI – B (3 X 3–	- 15 Marks)			001 H	
6. 7	Compare Lazy vs Eag	ger learner.				CO1- U	
/. 8	Define hyper plane as	nd support vector				CO2 = U	
0. 9	How learning rate va	ine support vector. lue affects the weight und	ates in Rack pro	nagation		CO4- II	
2. 10	List out some applica	tions of unsupervised lear	ning	PuSanon	•	CO5- II	

PART – C (5 x 16= 80 Marks)

11.	(a)	Explain in detail the different types of Machine learning process in detail.	CO1- U	(16)						
	Or									
	(b)	Explain the performance measures used for evaluating the Machine learning Model.	CO1- U	(16)						
12.	(a)	How Bayes theorem supports the concept learning principle? Or	CO2- U	(16)						
	(b)	Explain Naïve Bayes classifier with an example	CO2- U	(16)						
13.	(a)	Explain how k-NN algorithm is used for classification with example.	CO3-U	(16)						
Or										
	(b)	Explain the concepts in support vector Machine.	CO3-U	(16)						
14.	(a)	Design ANN for implementing logical OR, AND, NOT, NOR, NAND and XOR.	CO4-App	(16)						
Or										
	(b)	(i) Use a simple perceptron with weights w0,w1 and w2 as -1,2,1 respectively, to classify data points (3,4);(5,2);(1,-3);(-8,-3),(-3,0).	CO4-App	(8)						
		(ii) Explain in detail , how the set of data be classified using simple perceptron.	CO4-U	(8)						
15.	(a)	Apply hierarchical clustering to the following 8 examples to convert into them into 3 clusters: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). Assume the initial seeds are A1,A4,A7.	CO5-App	(16)						

Or

(b) Explain hierarchical clustering in detail. CO5-U (16)