Reg. No. :

Question Pape	r Code: 49217
----------------------	---------------

B.E./B.Tech. DEGREE EXAMINATION, NOV 2019

Elective

Computer Science and Engineering

14UCS917 - MASSIVE DATASET ANALYTICS

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

PART A - (10 x 1 = 10 Marks)

(Answer all Questions)

1.	Near real time proce	essing deals with	characteristics of data.	CO1- R
	(a) velocity	(b) value	(c) storage	(d) volatility
2.	Near real time proce	essing deals with	characteristics of data.	CO1- R
	(a) velocity	(b) value	(c) storage	(d) volatility
3.	How the bayesian ne	etwork can be used to a	answer any query?	CO2- R
	(a) Full distribution		(b) Joint distribution	
	(c) Partial distribution	on	(d) All of the mentioned	
4.	Fuzzy logic is in the	e form of		CO2- R
	(a) Two-valued Log	ic	(b) Crispest logic	
	(c) Many – valued L	logic	(d) Binary set Logic	
5.	The times by which produced by the syst	stimuli must be proces tem is known as	ssed and some response	CO3- R
	(a) Compile time	(b) Frequency	(c) Deadlines	(d) Execution time
6.	Bloom filter consists	s of		CO3- R
	(a) Array		(b) Vector	
	(c) Key values		(d) Both A & C	

7.	Market-basket problem was formulated by			CO4- R		
	(a) A	Agrawal et al	(b) Steve et al.	(c) Toda et al	(d) Simon et a	ıl
8.	Which of the following clustering require merging approach?				C	CO4- R
	(a) F	Partitional		(b) Hierarchical		
	(c) Ì	Naïve Bayes		(d) None of the Mentione	ed	
9.	was the first to publicize MapReduce – a system they had used to scale their data processing needs.			C	205- R	
	(a) Y	Yahoo	(b) Google	(c) Microsoft	(d) Linux	
10.	"Sha witl	arding" a datab h	ase across many server	instances can be achieved	C	205- R
	(a) I	LAN	(b) SAN	(c) MAN	(d) All of the	above
			PART – B (5	5 x 2= 10Marks)		
11.	. Explain Analysis vs Reporting CO1- F				1- R	
12.	2. Define Bayesian Modeling.			CO	2- R	
13.	3. What are the applications of Realtime Analytics Platform(RTAP)?			CO3- R		
14.	Explain Clustering Using Map-Reduce?			CO4- R		
15.	Wha	at is the use of I	Hive in Hadoop		CO	5- R
16.	(a)	Consider lin candidates to error and us prediction error	PART – C near, quadratic and c be selected as the m se leave- one-out cr or and select appropriat Or	(5 x 16= 80Marks) ubic model as the possible nodel with lowest prediction coss validation to compute te model.	e CO1- App	(16)
	(b)	Briefly descri	be some important resa	mpling techniques.	CO1- App	(16)
17.	(a)	Explain with a	an example support vec Or	ctor and kernel methods.	CO2- U	(16)
	(b)	(i) How to use reduction?	e the principal compone	ent analysis for the feature	CO2- U	(8)
		(ii) Explain th	e process of extracting	fuzzy models from data?	CO2- U	(8)

18.	(a)	Explain how to estimate moments using AMS algorithm. Suppose the stream is c, e, c, f, a, e, g, f, f, b, b, c, g, b, a, a, f, d, a, e. The length of the stream is $n = 20$ and consider the random positions 5, 9, 13. Illustrate the working of the AMS algorithm for this stream.	CO3- U	(16)
	(b)	Explain in detail about Alon-Matias-Szegedy algorithm for second moments	CO3-U	(16)
19.	(a)	Examine how the data is processed in BFR Algorithm are generated from frequent itemsets. Or	CO4-Ana	(16)
	(b)	Describe in detail about Hierarchical Clustering methods.	CO4- U	(16)
20.	(a)	Describe the various visualization techniques that can be used for visualizing data.	CO5- U	(16)
		Or		
	(b)	(i) Write Short notes on MapReduce and Sharding	CO5- U	(8)
		(ii) Explain in detail about Hadoop Distributed file systems?	CO5- U	(8)