Α		Reg. No. :								
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2019									
		Fourth Se								
		Computer Science	and Engineering							
15UMA421 - DISCRETE MATHEMATICS										
		(Common to Information	ation Technology)							
(Regulation 2015)										
Dura	ation: Three hours		Maximum: 10	0 Marks						
		Answer ALL	Questions							
PART A - (10 x 1 = 10 Marks)										
1.	What is the value of -	$\neg (P \land Q)$ if both P and Q	Q are T	CO1-R						
	(a) T	(b) F	(c) either T or F	(d) Both T or F						
2.	If $A = P \rightarrow (Q \lor R)$ ar	$\operatorname{nd} \mathbf{B} = (P \to Q) \lor (P \to Q)$	R) then	CO1-R						
	(a) $A \lor B = T$	(b) $A \wedge B = T$	(c) $A \Leftrightarrow B$	(d) $A \Rightarrow B$						
3.	In how many ways ca	n 5 children arrange the	emselves in a ring?	CO2-R						
	(a) 5	(b)5!	(c)10	(d)20						
4.	How many 3-digit nu 8 and 9 so that no dig	CO2-R								
	(a) 9*8*7	(b)9+8+7	(c) 7*6*5	(d) 7+6+5						
5.	How many edges are	there in a graph with 10) vertices each of degree 5?	CO3-R						
	(a) 50	(b) 100	(c) 25	(d) 10						
6.	In a tree pendent verte	ex has degree		CO3-R						
	(a) 1	(b) 0	(c) 2	(d) No edges						
7.	The only idempotent	element of a is i	ts identity element.	CO4-R						
	(a) ring	(b) filed	(c) group	(d) set						
8.	If every element in a g	group is its own inverse	e, then the group is	CO4-R						
	(a) Closure	(b) Identity	(c) Abelian	(d) Inverse						
9.	that every distributive	lattice is modular and		CO5-R						
	(a) not conversely	(b) conversely	(c) not inverse	(d) inverse						

10.	In a	ny Boolean alge	bra, if $a = b$ iff $a \overline{b} + b$	\bar{a} b =0		CO5-R				
	(a) a	$a \bar{b} + \bar{a}b = 1$	(b) a $\overline{b} + \overline{a}b = a$	(c) a $\overline{b} + \overline{a}b = 0$	(d) a $\overline{b} + \overline{a}$	b = b				
			PART – B (5	x 2= 10Marks)						
11.	Wha	at is tautology?	Give an example.			CO1-R				
12.	Wri	te the generating	g function for the seque	ence of positive integer		CO2-R				
13.	Def	ine graph isomo	rphism.			CO3-R				
14.	Def	ine ring and giv	CO4-R							
15.	Prov	we a.(a+b)=a+(a	b) in a Boolean algebra	a.		CO5-R				
	PART – C (5 x 16= 80Marks)									
16.	(a)	Obtain the PD	NF &PCNF of the form	nula $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$.	CO1-App	(16)				
		(i) Using truth	table.							
		(ii) Without us	ing truth table							
	Or									
	(b)	•	r otherwise Obtain the (x)), (x)($R(x) \rightarrow \neg Q(x)$) =	following implication. $\Rightarrow (x)(R(x) \rightarrow \neg P(x))$	CO1- App	(8)				
		(ii) Prove that	$(\exists x)(A(x) \lor B(x)) \Leftrightarrow (\exists x)$	$A(x) \lor (\exists x) B(x).$	CO1- App	(8)				

17. (a) State and Prove the pigeon hole principleCO2-App(16)

Or

(b) (i) Solve the recurrence relation of the Fibonacci sequence of the CO2 -Ana (8) numbers $f_n = f_{n-1} + f_{n-2}$, n>2 with the initial conditions $f_1=1$, $f_2=1$.

(ii) Show that $3^{2n} + 4^{n+1}$ is a divisible by 5, $n \ge 0$ by using CO2 - Ana (8) method of induction

18. (a) Prove that the given connected graph G is Eulerian if & only if all CO3-Ana (16) the vertices of G are of even degree.

Or

(b) Define isomorphism between two graphs. Are the simple graphs CO3-Ana (16) with the following adjacency matrices isomorphic?

[0	1	0	0	0	1	[0	1	0	0	0	1]
1	0	1	0	1	0	1	0	1	0	0	1
0	1	0	1	0	1	0	1	0	1	1	0
0	0	1	0	1	0	0	0	1	0	1	0
0	1	0	1	0	1	0	0	1	1	0	1
1	0	1	0	1	0	1	1	0	0	1	0

19. (a) Let (G,*) be finite cyclic group generated by an element a∈G If G CO4-U (16) is order n,Prove that a_n =e & G ={a,a²,a³,....aⁿ=e}Where n is least positive integer for which a_n =e

Or

- (b) Prove that the Kernal of a homomorphism of from group (G,*) to CO4-Ana (16) another group (H,Δ) is a normal sub group of (G,*)
- 20. (a) If $(L,*,\oplus)$ is distributive lattice and if a*b=b*c and CO5-U (16) $a \oplus b = a \oplus c$ for all a,b,c $\in L$ show that b=c and hence show that complement of an element is unique if it exists in L.

Or

(b) Draw the Hasse diagram of the Lattice L of all subsets of {a,b,c} CO5-U (16) under intersection and union.

##