A		Reg. No. :							
Question Paper Code: 52002									
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019									
Second Semester									
Civil Engineering									
15UMA202- ENGINEERING MATHEMATICS-II									
(Common to All branches)									
(Regulation 2015)									
Dura	Duration: Three hours Maximum: 100 Mar								
Answer ALL Questions									
		PART A - (10	x 1 = 10 Marks)						
1.	How will You convert Cauchy's Homogeneous linearCO1-Fdifferential equation to a linear differential equation with constants Coefficients?CO1-F								
	(a) $z = \log x$	(b) $x = \log z$	(c) $z = e^x$	(d) $z = \cos x$					
2.	How will You convert Legendre's linear differential equation to a linear differential equation with constants Coefficients?CO1-								
	(a) $z = \log(ax+b)$	(b) $ax+b = \log z$	(c) $z = e^{(ax+b)}$	(d) $z = \cos(ax)$	(+b)				
3.	$\nabla(r^n) = ?$				CO2-R				
	(a) \vec{r} .	(b) $r^{n-2}\vec{r}$.	(c) $nr^{n-2}\vec{r}$.	(d) nr^{n-2} .					
4.	$\operatorname{div}\left(\frac{\vec{r}}{r}\right) = ?$				CO2-R				
	(a) $\frac{1}{r}$	(b) $\frac{2}{r}$	(c) $\frac{r}{r}$	(d) $\frac{2}{r}r^n$					
5.	$u = 3x^2y - y^3$ is				CO3-R				
	(a) non - harmonic	(b) harmonic	(c) differentiable	(d) non -differ	rentiable				
6. The image of the line $x = 2$ under the transformation $w = \frac{1}{z}$					CO3-R				
	(a)1/4	(b)1/2	(c)1/9	(d)1/16					

7.	Find Value of $\int_C \frac{z}{z-2} dz$, where C is the circle $ z-2 = \frac{3}{2}$									
	(a) 2πi	(b) 6πi	(c) 4 <i>π</i> i	(d) 7πi						
8.	The Poles of $f(z) = \frac{4}{Z^3(z-2)}$									
	(a)1,2,0,3	(b) 2,0,0,0	(c)4,0,0,0	(d)3,0,0,0						
9.	The L[e ^{at}] is				CO5-R					
	(a)1/s-a	(b)s/s-a	(c)a/s-a	(d)1/s+a						
10.	The $L^{-1}[s/s^2+a^2]$ is				CO5-R					
	(a) cos hat	(b) sin hat	(c) sin at	(d) cos at						
PART - B (5 x 2 = 10 Marks)										
11.	Transform $(x^2D^2 + x D + 1) = 0$ into differential equation with constant									
	coefficients, where $D = \frac{d}{dx}$.									
12.	If $\vec{F} = x^3 \vec{\iota} + y^3 \vec{j} + z^3 \vec{k}$, find div (curl \vec{F}).									
13.	Show that the function $y + e^x \cos y$ is harmonic									
14.	Evaluate $\int_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where C is $ Z = 3/2$.									
15.	Find the Laplace transform of $f(t) = cos^3 3t$									
PART – C (5 x 16= 80Marks)										
16.	(a) Solve $(D^2 + a^2)$ parameters.	²) $y = \tan x$ by th	e method of variati	on of CO1-App	(16)					

Or

(b) Solve $(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$ CO1-App (16)

- 17. (a) Verify Green's theorem in theorem in the plane for CO2-App (16) $\int_{C} (3x^{2} - 8y^{2})dx + (4y - 6xy)dy$ where C is the boundary of the region defined by $x = y^{2}, y = x^{2}$.
 - Or
 - (b) Verify Stoke's theorem for the function $\vec{F} = x^2\vec{\imath} + xy\vec{\jmath}$ CO2-App (16) integrated round the square in the z = 0 plane whose sides are along the lines x = 0, y = 0, x = a, y = a.

18. (a) If
$$f(z) = u + iv$$
 is an analytic function of z and CO3-Ana (16)
 $u - v = \frac{\cos x + \sin x - e^{-y}}{2(\cos x - \cosh y)}$, find $f(z)$ given that $f\left(\frac{\pi}{2}\right) = 0$.
Or

- (b) Find the bilinear transformation which maps the points -2,0,2 CO3 Ana (16) into the points w = 0, i, -i respectively.
- 19. (a) Using Cauchy's integral formula, evaluate $\int_C \frac{1}{Z^2-1} dz$ where C is CO4-Ana (16) the circle with centre at Z=0 and radius 2.

Or

- (b) Using contour integration, evaluate $\int_{-\infty}^{\infty} \frac{x dx}{(x+1)(x^2+1)}$ CO4-Ana (16)
- 20. (a) Find the Laplace transform of CO5-App (16)
 - (i) $\sin 2t \sin 3t$
 - (ii) $cos^2 3t$
 - (iii) $sin^2 2t$

Or

(b) Solve by using laplace transform $(D^2 + 9) = cos2t$ given that CO5-App (16) $y(0) = 1, y\left(\frac{\pi}{2}\right) = -1.$

##