	Reg. No. :		
	Question Pape	r Cod	e:
חת		X7 A N // TN	т.

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

54025

Fourth Semester

Agriculture Engineering

15UMA425 - PROBABILITY, STATISTICS AND NUMERICAL METHODS

(Regulation 2015)

(Statistical tables maybe permitted)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1.	If X is a continuous ra	E(X)=	CO1- R	
	(a) $\int_{-\infty}^{\infty} x f(x) dx$	(b) $\int_{-\infty}^{\infty} f(y) dy$	(c) $\int_{-\infty}^{\infty} f(x, y) dx$	(d) $\int_{-\infty}^{\infty} f(x, y) dy$
2.	If the random variabl mean is	e X has uniform distr	ibution in (-3,3), then its	CO1- App
	(a) 2	(b) 1.96	(c) 3	(d) 0
3.	When the population called	parameter is less than	a certain value, the test is	CO2-R
	(a) left – tailed test	(b) right tailed test	(c) two tailed test	(d) none of these
4.	Choose the correction	factor		CO2- App
	(a) T^2N	(b) T/N	(c) T^2/N (d) 0	
5.	The number of facto Design is	ors analysed in Comp	letely Randomised Block	CO3- R
	(a) Two	(b) One	(c) Three	(d) Four
6.	The number replication treatments in LSD is	tions of each treatm	nent and the number of	CO3- R
	(a) Equal	(b) Unequal	(c) Equal to two	(d) Equal to one
7.	In Cubic Spline, M ₀ =M	M _n =		CO4-R
	(a) 1	(b) n	(c)0	(d) 3

8.	The argu	he value of any divided difference is guments.					is _		of	the order of the		CO4- R	
	(a) e	qual			(b)	depen	dent		(c) unequ	al	(d) independent	
9.	Deg	egree of y(x) in Simpson's one third rule is									CO5- R		
	(a) 1				(b)	2			(c) 3		(d) 4	
10.	The	conditio	on fo	r the	poin	t x_0 to	b be a	max	kimum	value i	S		CO5- R
	(a) <i>f</i>	<i>r</i> ''(<i>x</i>) <	0		(b)	$f'(x_0)$) <0		(c	$f''(x_0)$) < 0	(d) $f'(x) <$	< 0
						PA	RT –	B (5	5 x 2=	10Mark	xs)		
11.	If X	is a con	tinuc	ous r	ando	m var	iable,	find	the v	alue of l	x if f(x)=2x, 0 <x<< td=""><td>3.</td><td>CO1- R</td></x<<>	3.	CO1- R
12.	Defi	ne the e	xpec	ted f	requ	ency i	n test	s for	indep	endence	e of attributes.		CO2- R
13.	Why	v a 2x2]	Latin	squ	are is	not p	ossib	le? E	Explain	1.		(CO3- U
14.	State	e Newto	n's c	livid	ed di	fferen	ce fo	rmul	a			CO4- App	
15.	State	e Simps	on's	1/3 ^{rc}	^l rule								CO5- R
						F	PART	$\mathbf{C} - \mathbf{C}$	(5 x 1	6= 80N	larks)		
16.	(a)	ARV	X ha	is the	e foll	owing	distr	ibuti	on		1	CO1- App) (8)
		X D(V)	0	1	$\frac{2}{2}$	3	4	5	6	7			
		(i) Find	0 1 the	a valu	Za e of	_∠a 'a'	5a	5a	4a	Ja	J		
		(ii) Fin	d <i>P</i> (X <	5), P	u 2 [2 <	X <	5]					
		. ,				L		1					
		(ii) De	rive l	MGF	F, me	an and	d vari	ance	of exp	ponentia	al distribution.	CO1- App) (8)
	(b)	(i) Th a	ndf	of				Or				CO1 And	(9)
	(0)	(1) 1110	pur	01	ſ	ax () < x <	1				COI- App	(8)
				e(a ,1	$\leq x \leq$	2	_				
				I(X,	y) = {	3a - ax	$, 2 \leq x$	≤ 3	then	tind 'a'	and cumulative		
					l	0,0	Otherv	vise					
		distrib	ution	funo	ction	of X.	`		1 4		1		
		(11) I	ne ti	ime lv di	(111 strib	nour: uted w	s) re vith p	quire	ed to	repair $-1/2$	a machine is	COI- App) (8)
		(1)	Wha	t is	the	proba	bilitv	tha	it the	-1/2.	time exceeds 2		
		(-)	hour	s?		r				· r ···-			

(2) What is the conditional probability that a repair takes at least 10 hours given that its duration exceeds 9 hours?

17. (a) (i) The means of two simple large samples of 1000 and 2000 CO2- App (8) members are 67.5 inches and 68 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation of 2.5 inches? Test at 5% level of significance.

(ii) The mean height and the standard deviation height of eight CO2- App (8) randomly chosen soldiers are 166.9 cm. and 8.29 cm. respectively.
The corresponding values of six randomly chosen sailors are 170.3cm and 8.50cm. respectively. Based on this data, can we conclude that soldiers are, in general, shorter than sailors at 5% level of significance?

Or

(b) (i) The following table gives the number of air-craft accidents that CO2- Ana (8) occurred during the various days of a week. Test whether the accidents are uniformly distributed over the week at 5% level of significance.

Day	Mon	Tues	Wed	Thu	Fri	Sat
No. of	15	19	13	12	16	15
accidents						

(ii) A sample of size 13 gave an estimated population variance of CO2- Ana (8)3.0, while another sample of size 15 gave an estimate of 2.5.Could both samples be from populations with the same variance at 5% level of significance?

18. (a) The following table shows the lives in hours of four batches of CO3- Ana (16) electric lamps

Batches	Lives	Lives in hours							
1	1610	1610	1650	1680	1700	1720	1800		
2	1580	1640	1640	1700	1750				
3	1460	1550	1600	1620	1640	1660	1740	1820	
4	1510	1520	1530	1570	1600	1680			

Perform an analysis of variance on these data and show that a significant test does not reject their homogeneity.

Or

(b) Analyze the data given below and interpret the results. Table Value F(4,12)=3.26, F(12,4)=5.91

A(13)	B(09)	C(21)	D(07)	E(06)
D(09)	E(08)	A(15)	B(07)	C(16)
B(11)	C(17)	D(08)	E(10)	A(17)
E(08)	A(15)	B(07)	C(10)	D(07)
C(11)	D(09)	E(08)	A(11)	B(15)

19. (a) (i) Find f(3) by Newton's divided difference formula for the data CO4- App (8)

Х	-4	-1	0	2	5
Y	12	33	5	9	35

CO4- App (8)

(ii) The following data are taken from the steam table:								
		0			1 10	. – .	1.0.0	

Temp ⁰ c	140	150	160	170	180
Pressure	3.685	4.854	6.502	8.076	10.225

Find the pressure at $t=142^{\circ}$

Or

- (b) (i) From the following table find f(x) and hence find f(6) using CO4- App (8) Newton's divided difference formula.
 - *x*: 1 2 7 8

(ii) Using cubic spline, find y(0.5) and y'(1) given $M_0 = M_2 = 0$ CO4- App (8) and the table

Χ	0	1	2
Y	-5	-4	3

Or

20.	(a)	(i) Evaluate	$\int_{0}^{1} \frac{dx}{1+x^{2}}$ by Trapezoidal rule.	CO5-App	(8)
			0		

(ii) Evaluate
$$\int_{0}^{\pi} \sin x dx$$
 by Simpson's $\frac{1}{3}^{rd}$ rule. CO5-E (8)

(b) (i) Evaluate $\int_{0.2}^{1.5} e^{-x^2} dx$ using the three point Gaussian Quadrature CO5- E (8) k = 0.1.

(ii) Apply Gauss three point formula to evaluate
$$\int_{-1}^{1} \frac{dx}{1+x^2}$$
. CO5- E (8)

54025