A
\mathbf{A}
4 A

Reg. No.:										
-----------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 54024

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Fourth Semester

Electronics and Communication Engineering

15UMA424 - PROBABILITY AND RANDOM PROCESSES

		(Common to Biome	edical Engineering)	
		(Regulati	on 2015)	
		(Statistical tables r	may be permitted)	
Dura	ation: Three hours		Maximun	n: 100 Marks
		PART A - (10 x	1 = 10 Marks	
1.	When X and Y are inc	dependent random var	riables $M_{X+Y}(t) =$	CO1-R
	(a) M_X (t) M_Y (t)	(b) $M_{XY}(t)$	$\left(c\right) M_{YX}\left(t\right)$	$\left(d\right) M_{X}\left(t\right) +M_{Y}(t)$
2.	If the moment general of the form $(0.4e^t + 0.4e^t)$	•	omial random variable X	CO1-R
	(a) 16	(b) 16/5	(c) 16/3	(d) 14/16
3.	If the joint probability (X,Y) is $f(x,y) = k$, 0	,	a bivariate random varianthe the value of k is	ble CO2-R
	(a) 1	(b) 4	(c) 2	(d) 3
4.	When X and Y are u X and Y is i.e., $cov(x, x)$		variables, the covariance	of CO2-R
	(a) 1	(b) -1	(c) 0	(d) 0.5
5.	If both parameter set process is known as	T and state space S an	re discrete, then the rando	om CO3-R
	(a) discrete random se	equence	(b) continuous random	process
	(c) discrete random pr	rocess	(d) continuous random	sequence
6.	Sum of two independe	ent Poisson processes	is a	CO3-R
	(a) Gaussian process	(b) Poisson process	(c) Ergodic process	(d) Binomial process
7.	Auto correlation funct	tion is an		CO4-R
	(a) odd function	(b) complex function	(c) invalid function	(d) even function

If $\{X(t)\}\$ and $\{Y(t)\}\$ are two random processes then $|R_{XY}(\tau)| \le$

CO4-R

- (a) $\sqrt{R_{XX}(0)R_{YY}(0)}$ (b) $R_{XX}(0) + R_{YY}(0)$ (c) $R_{XX}(0)/R_{YY}(0)$
- (d) 0
- The convolution form of the output Y(t) of a linear time invariant system with the input X(t) and the system weighting function h(t) is

CO5-R

- (a) $\int_{-\infty}^{\infty} h(u) \ du$ (b) $\int_{-\infty}^{\infty} h(u) \ X(t-u) \ \int_{-\infty}^{\infty} h(u) \ y(t-u) \ du$ (d) $\int_{-\infty}^{\infty} X(t-u) \ du$
- 10. When the auto correlation function of the random telegraph signal process is $R(\tau) = a^2 e^{-2\gamma|\tau|}$ then its power spectral density is given by

CO5-R

- (a) $\frac{4a^2\gamma}{4\gamma^2+\omega^2}$
- (b) 2 $\delta(\tau)$
- (c) $4a^2\gamma$

(d) $\delta(\tau)$

PART - B (5 x 2= 10Marks)

- 11. If $(A \cup B) = \frac{5}{6}$, $P(A \cap B) = \frac{1}{3}$ and $P(\bar{B}) = \frac{1}{2}$, find P(A) and P(B). CO1-R
- 12. Find E(XY) using the joint probability density function f(x, y) =CO2-R $(8xy, 0 \le x \le 1; 0 \le y \le x)$ else where
- 13. Define Wide sense stationary process.

CO3-R

14. Define the Power spectral density.

CO4-R

15. Define the system function or power transfer function.

CO5-R

(8)

- 16. (a) (i) A student buys 1000 integrated circuits (ICs) from supplier A, CO1 -App 2000 ICs from supplier B, and 3000 ICs from supplier C. He tested the ICs and found that the probability of getting a defective IC given that it came from supplier A is 0.05, probability of getting a defective IC given that it came from supplier B is 0.10 and probability of getting a defective IC given that it came from supplier C is 0.10. If the ICs from the three suppliers are mixed together and one is selected at random, what is the probability that it is defective?
 - (ii) A random variable 'X' has the following probability function

CO1 -App (8)

Values of X	0	1	2	3	4	5	6	7	8
Probability P[X = x]	a	3a	5a	7a	9a	11a	13a	15a	17a

- 1) Determine the value of 'a'.
- 2) Find P[$X \ge 3$]
- Find P[0 < X < 5]. 3)

Or

- (b) (i) Obtain the Moment Generating Function of Binomial CO1 -App (8) distribution and hence find its mean and variance
 - (ii) The time (in hours) required to repair a machine is CO1 -App (8) exponentially distributed with parameter $\lambda = 1/2$.
 - (1) What is the probability that the repair time exceeds 2 hours?
 - (2) What is the conditional probability that a repair takes at 11 hours given that its direction exceeds 8 hours?
- 17. (a) (i) The two dimensional random variable (X,Y) has the joint CO2-App density function f(x,y) = x + 2y, x = 0.1.2; y = 0.1.2
 - (1) Find the value of k.
 - (2) Find the marginal distribution of X and Y.
 - (3) Find the conditional distribution of Y for X=x.
 - (ii) If X and Y each follow an exponential distribution with CO2-App parameter 1 and are independent, find the probability density function of U = X Y.

Or

(b) Two random variables X and Y have the following joint CO2- Ana probability density function $f(x,y) = \begin{cases} 2-x-y, & 0 \le x \le 1, \\ 0, & otherwise \end{cases}$ (16)

Find the correlation coefficient of (X,Y).

- 18. (a) (i) Show that the random process $X(t) = K\cos(\omega t + \theta)$ is wide CO3- Ana sense stationary if K & ω are constant and ' θ ' is uniformly distributed random variable in $(0, 2\pi)$.
 - (ii) If customers arrive at a counter in accordance with a Poisson CO3- Ana process with a mean rate of 2 per minute, find the probability that the interval between 2 consecutive arrivals is (1) more than 1 minute (2) between 1 minute and 2 minutes and (3) 4 minutes or less.

Or

(8)

- (b) (i) A salesman territory consists of three cities A,B and C. He CO3- Ana never sells in the same city on successive days. If he sells in A, then the next day he sells in city B. However if he sells in either B or C, the next day he is twice as likely to sell in the city A as in the other city. In the long run, how often does he sell in each of the cities?
 - (ii) Consider the process $X(t) = A \cos t + B \sin t$, where A and B CO3- Ana are uncorrelated random variables each with mean 0 and variance 2. Show that the process X(t) is covariance stationary.
- 19. (a) (i) Two random processes X(t) and Y(t) are defined as follows: CO4- App (8) $X(t) = A \cos(\omega t + \Theta)$; $Y(t) = B \sin(\omega t + \Theta)$ where A, B and ω are constants and Θ is a random variable that is uniformly distributed between 0 and 2π . Find the cross correlation function of X(t) and Y(t).
 - (ii) Find the power spectral density of a WSS process with CO4-App autocorrelation function $R(\tau) = \sigma^2 \cos p\tau$. (8)

Or

- (b) (i) The power spectral density function of a zero mean WSS CO4- Ana process $\{X(t)\}$ is given by $S(\omega) = \begin{cases} 1 & |\omega| < \omega_0 \\ 0 & else\ where \end{cases}$. Find $R(\tau)$ and show also that X(t) and $X\left(t+\frac{\tau}{\omega_0}\right)$ are uncorrelated.
 - (ii) If $R_{yy}(\tau) = 2R_{xx}(\tau) R_{xx}(\tau + 2a) R_{xx}(\tau 2a)$, CO4- Ana (8) prove that $S_{yy}(\omega) = 4sin^2 a\omega S_{xx}(\omega)$.
- 20. (a) (i) Let Y(t) = X(t) + N(t) be a wide-sense stationary process CO5 -U where X(t) is the actual signal and N(t) is a zero-mean noise process with variance σ_N^2 and independent of X(t). Find the power spectral density of Y(t).
 - (ii) If $\{X(t)\}$ is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(u) X(t \text{CO5-U})$ (8) $u \, du$, then prove that the system is a linear time-invariant system.

Or

(b) A Wide sense stationary process X(t) is the input to a linear CO5-App (16) system whose impulse response is $h(t) = 2e^{-7t}$; $t \ge 0$. The autocorrelation of the function of the process is $R_{XX}(\tau) = e^{-4|\tau|}$. Find the power spectral density of the output process Y(t).